3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие бывают датчики давления

Датчики измерения давления

Из чего состоят датчики давления? Классификация по принципу действия, принцип работы каждого типа датчиков, преимущества и недостатки каждого. Также вы узнаете, на что нужно обращать внимание при выборе датчиков давления. Производители и дилеры датчиков давления.
Вы также можете посмотреть другие статьи. Например, «Датчики температуры» или «Абсолютная влажность воздуха».

Датчик давления — это устройство, в котором выходные параметры зависят от давления исследуемой среды, будь то жидкость, газ или пар. Современные системы не могут обойтись без точных приборов этого типа, они используются в системах автоматизации различных отраслей: энергетика, пищевая промышленность, нефтяная и газовая отрасль и многие-многие другие. У нас в каталоге, есть раздел датчики давления с помощью которого, вы сможете выбрать и купить нужный вам датчик.

В состав любого датчика давления входит:

  • первичный преобразователь давления с чувствительным элементом;
  • различные по конструкции корпусные детали;
  • схемы для повторной обработки сигнала.

Классификация датчиков давления по принципу действия

Оптические

Оптические датчики давления могут быть построены на двух принципах измерения: волоконно-оптическом и оптоэлектронном.

Волоконно-оптические

Волоконно-оптические датчики давления являются наиболее точными и их работа не сильно зависит от колебания температуры. Чувствительным элементом является оптический волновод. Об измеряемой величине давления в таких приборах обычно судят по изменению амплитуды и поляризации проходящего через чувствительный элемент света. Более подробно об волоконно-оптических датчиках давления можно почитать в этом PDF документе.

Оптоэлектронные

Датчики этого типа состоят из многослойных прозрачных структур. Через эту структуру пропускают свет. Один из прозрачных слоев может изменять свои параметры в зависимости от давления среды. Есть 2 параметра, которые могут изменяться: первый это показатель преломления, второй это толщина слоя. На иллюстрации показаны оба метода, изменение показателя преломления — рисунок а, изменение толщины слоя — рисунок б.

Понятно, что при изменении этих параметров будут меняться характеристики проходящего через слои света, это изменение будет регистрироваться фотоэлементом. Более подробно об оптоэлектронных датчиках давления можно почитать в этом PDF документе. К достоинствам датчика этого типа можно отнести очень высокую точность.

Магнитные

Другое название таких датчиков — индуктивные. Чувствительная часть таких датчиков состоит их Е-образной пластины, в центре которой находится катушка, и проводящей мембраны чувствительной к давлению. Мембрана располагается на небольшом расстоянии от края пластины. При подключении катушки, создается магнитный поток, который проходит через пластину, воздушный зазор и мембрану. Магнитная проницаемость зазора примерно в тысячу раз меньше магнитной проницаемости пластины и мембраны. Поэтому, даже небольшое изменение величины зазора влечет за собой заметное изменение индуктивности.

Емкостные

Имеет одну из наиболее простых конструкций. Состоит из двух плоских электродов и зазора между ними. Один из этих электродов представляет собой мембрану на которую давит измеряемое давление, вследствие, чего изменяется величина зазора. То есть, по сути, этот тип датчиков представляет собой конденсатор с изменяющейся величиной зазора. А как известно емкость конденсатора зависит от величины зазора. Емкостные датчики способны фиксировать очень маленькие изменения давления.

Ртутные

Тоже очень простой измерительный прибор. Работает по принципу сообщающихся сосудов. На один из этих сосудов давить измеряемое давление. Давление определяется по величине ртутного столба.

Пьезоэлектрические

Чувствительным элементом датчиков этого типа является пьезоэлемент — материал, выделяющий эклектический сигнал при деформации (прямой пьезоэффект). Пьезоэлемент находится в измеряемой среде, он будет выделять ток пропорциональный величине изменения давления. Так как электрический сигнал в пьезоматериале выделяется только при деформировании, а при постоянном давлении деформирование не происходит, то этот датчик пригоден только для измерения быстро меняющегося давления.

Пьезорезонансные

Этот тип тоже использует пьезоэффект, только в отличие от прошлого типа тут используется обратный пьезоэффект — изменение формы пьезоматериала в зависимости от подаваемого тока. В датчиках данного типа используется резонатор (например пластина) из пьезоматериала, на которую нанесены с двух сторон электроды. На электроды по переменно подается напряжение разного знака, таким образом пластина изгибается то в одну то в другую сторону с частотой подаваемого напряжения. Но если на эту пластину подать силу, например мембраной чувствительной к давлению, то частота колебания резонатора изменится. Частота резонатора и будет показывать величину, с которой давление давит на мембрану, а она в свою очередь давит на резонатор.

В качестве примера, на рисунке приведен пьезорезонансный датчика абсолютного давления. Он выполнен в виде герметичной камеры 1. Герметичность достигается соединением корпуса 2, основания 6 и мембраны 10, которая крепится к корпусу с помощью электронно-лучевой сварки. На основании 6 закреплены два держателя: 4 и 9. Держатель 4 крепится к основанию с помощью специально перемычки 3 и он держит силочувствительный резонатор 5. Держатель 9, установлен для крепления опорного пьезорезонатора 8.

Мембрана 10 передает усилие через втулку 13 на шарик 6, закрепленный в держателе 4. Шарик 4 передает силу давления на силочувствительный резонатор 5.

Провода 7 крепятся на основании 6 и служат для соединения резонаторов 5 и 8 с генераторами 17 и 16 Выходной сигнал абсолютного давления формируется схемой 15 из разности частот генераторов. Датчик давления помещен в активный термостат 18 с постоянной температурой 40 градусов Цельсия. Измеряемое давление подается через штуцер 12.

Резистивные

По-другому этот тип датчиков называет тензорезистивный. Тензорезистор — это элемент, изменяющий свое сопротивление в зависимости от деформирования. Эти тензоризисторы устанавливают на мембрану чувствительную к изменению давления. В итоге, при давлении на мембрану она изгибается и изгибает тензоризисторы, закрепленные на ней. Вследствие чего, сопротивление на них меняется и меняется величина тока в цепи.

На какие параметры нужно обращать внимание при покупке датчиков давления

  1. Вид давления. Очень важно понимать какой вид давления необходимо измерять. Существует 5 типов: абсолютное, дифференциальное(относительное), вакуум, избыточное, барометрическое. Для лучшего понимания разницы между ними, рекомендуем прочитать статью «виды давления».
  2. Диапазон измеряемого давления.
  3. Степенью защиты прибора. В разных отраслях использования датчиков будут разные условия эксплуатации, для которых необходимы разные степени защиты от проникновения воды и пыли. Определитесь, какую степень защиты электроприбора нужно выбрать именно вам.
  4. Наличие термокомпенсации. Температурные эффекты, такие как расширение материалов, могут наложить достаточно сильные помехи на выходные показания датчика. Если у вас происходят постоянное изменение температуры измеряемой среды, то термокомпенсация необходима. Обратите также внимание на границы температур. Например, у датчика ST250PG2BPCF есть термокомпенсация в пределах от -40 до 100 градусов Цельсия.
  5. Материал. Материал может оказать решающую роль при использовании датчика в агрессивных средах, в таком случае необходим выбор материала с высокой коррозийной стойкостью.
  6. Вид выходного сигнала. Важно определиться какой вид нужен вам. Аналоговый или цифровой? Если аналоговый, то какие диапазоны выходных сигналов и сколько проводов? Например, диапазоны могут быть 4. 20 мА.

Производители и дилеры

В нашем каталоге представлены датчики давления, которые можно приобрести у следующих производителей и дилеров: Honeywell International, Компэл, Freescale Semiconductor, Inc, Omron Electronics LLC, ST Microelectronics, BD Sensors RUS.

Если вам понравилась статья нажмите на одну из кнопок ниже

Датчики давления в шинах — какие выбрать?

Давление в шинах многие проверяют два раза в год во время сезонной смены шин. Причем многие верят на слово работнику шиномонтажа: если он сказал, что все в порядке, то владелец машины забывает о проблеме еще на полгода. Между тем неправильное давление в шинах может быть опасно.

Чем опасно неправильное давление в шинах?

Читать еще:  Моторное масло siboil 10w 40 отзывы цена

Недостаточно накачанные шины испытывают увеличенную нагрузку на боковины. Это негативным образом влияет на целый ряд показателей автомобиля:

растет тормозной путь;

повышенное внутреннее трение вызывает нагрев, что ведет к ускоренному разрушению шины (трещины, расслоение, разрыв).

В свою очередь, сильно перекачивать шины также вредно по ряду причин. Такие шины:

легче повредить как выступами, так и впадинами на дороге;

увеличивают тормозной путь из-за уменьшения площади пятна контакта с дорогой;

делают автомобиль жестким и малокомфортным при движении.

При этом и недостаточное, и избыточное давление приводит к неравномерному износу протектора, что снижает срок службы шины.

Какое давление в шинах правильное?

Указанное производителем на стойке водительской двери или на внутренней стороне лючка бензобака оптимальное давление в колесах актуально для холодных шин. Понятие «холодные» говорит о том, что проверять давление рекомендуется на постоявшем несколько часов автомобиле.

Как появились системы контроля давления в шинах?

Подобные системы появилась на военной технике вместе с возможностью подкачки шин. В кабине стоял стрелочный манометр, по которому контролировалось давление в системе, и тут же был расположен кран, позволяющий снизить давление в шинах для повышения проходимости, подкачать их на твердых покрытиях, а также обеспечить непрерывную подачу воздуха в систему при повреждении шины пулями или осколками.

Избежать неприятностей, которые могут возникнуть даже от кратковременного движения на спущенном колесе, помогают системы контроля давления в шинах. В инструкциях по эксплуатации, прилагаемых к автомобилям, такое устройство называют TPMS (Tires Pressure Monitoring System). У истоков применения таких систем стояли американские фирмы. Автопроизводители начали применять TPMS на серийных автомобилях еще в конце 90-х годов прошлого века. А с 2008 года контроль давления в шинах стал обязательным для всех продаваемых на внутреннем рынке США легковушек и пикапов. Такие системы контроля за давлением (часто и температурой) получают все более широкое распространение и в нашей стране. Иногда в качестве опции.

Самой простой по конструкции является система косвенного измерения давления, вообще не требующая никаких дополнительных блоков. Она представляет собой дополнительную программу, зашитую в блок управления ABS. Работа системы основана на том, что у спущенного колеса становится меньше радиус качения и, соответственно, такое колесо проходит за один оборот меньшее расстояние, чем исправное колесо. Датчики частоты вращения колес ABS определяют расстояние, проходимое каждой шиной за один оборот. Сигналы датчиков сравниваются в блоке ABS с контрольными параметрами. При расхождении значений загорается индикатор или появляется текстовое сообщение на панели приборов и звучит предупреждающий сигнал. В такой системе всегда предусмотрена калибровка. Вручную осуществляется адаптация к давлению воздуха в шинах в случае их замены или проведения каких-либо ремонтных работ с ходовой частью.

Нештатные устройства

Существуют и нештатные системы контроля давления в шинах. Вначале рассмотрим таковые с датчиками, непосредственно измеряющими давление внутри шины и передающие по радиоканалу сигналы на приемное устройство, обычно совмещенное с индикаторным дисплеем. Такие датчики обязательно снабжаются источниками энергии в виде малогабаритных батарей, но могут значительно различаться по исполнению. Когда-то датчики устанавливали прямо в центральной канавке колесного диска с помощью ленты, проходящей по канавке. Подобная конструкция уже устарела, и сегодня гораздо чаще используются датчики, закрепленные на внутренней стороне колесного вентиля.

Для монтажа такого датчика на автомобиль нужно разбортировать колесо, извлечь штатный вентиль и на его место установить датчик. Затем — монтаж покрышки, балансировка и установка дисплея.

В состав системы контроля давления в шинах, предназначенной для легковых автомобилей, включены четыре датчика и приемник с дисплеем. Все датчики имеют собственные батарейки, обеспечивающие непрерывную работу в течение трех-пяти лет (информация сбрасывается на приемник короткими импульсами раз в минуту, а то и реже). Общение с приемником осуществляется по радиоканалу, «прописка» датчика на определенном колесе — автоматически либо вручную.

Весьма важен вес самих датчиков. От этого зависит, не придется ли приклеивать с противоположной стороны «гантелю», чтобы отбалансировать колесо. Также надо учесть, что при движении покрышка нагревается, что приводит к росту давления, поэтому многие датчики определяют и температуру воздуха в шине. При расчете показываемых на экране величин приемник учитывает поправку на температуру. Еще система способна отличить очень медленное, естественное снижение давления от быстрой утечки воздуха в результате прокола.

В продаже есть и другие датчики давления воздуха в шинах, которые наворачиваются на резьбу вентилей снаружи колеса. Такая конструкция обеспечивает весьма быстрый монтаж своими силами. А принимать сигнал и показывать давление на рабочем месте водителя может специальное устройство, но порой используется и смартфон владельца, принимающий сигнал от датчиков по протоколу Bluetooth.

Главный недостаток — такие датчики не защищены от хищения, а потому менее предпочтительны.

Значительные размеры таких датчиков обусловлены необходимостью установки в них элемента питания.

Однако есть и более компактные варианты:

Я бы рекомендовал систему с внутренними датчиками и принимающим устройством, которое вставляется в гнездо прикуривателя.

Предлагаю в комментариях поделиться, какие системы контроля давления в шинах используете вы (ну, помимо ручного манометра).

Электрические датчики давления

Сегодня для цели измерения давления в разных областях промышленности используют отнюдь не только ртутные барометры и анероиды, но и различные датчики, отличающиеся как принципом действия, так и достоинствами и недостатками, свойственными каждому типу таких датчиков. Современная электроника позволяет реализовывать датчики давления непосредственно на электрической, электронной базе.

Так что же мы понимаем под словосочетанием «электрический датчик давления»? Какие бывают электрические датчики давления? Как они устроены, и какими обладают особенностями? И наконец, какой датчик давления выбрать, чтобы он максимально подошел для той или иной цели? В этом и разберемся по ходу данной статьи.

Прежде всего определимся с самим термином. Датчиком давления называется устройство, выходные параметры которого зависят от измеряемого давления. В качестве исследуемой среды может выступать пар, жидкость или какой-нибудь газ, в зависимости от сферы применения конкретного датчика.

Современным системам необходимы точные приборы данного типа, как важные составные части систем автоматизации энергетической, нефтяной, газовой, пищевой и многих других промышленностей. Жизненно необходимы миниатюрные датчики давления в медицине.

Любой электрический датчик давления включает в себя: чувствительный элемент, служащий для передачи воздействия на первичный преобразователь, схему обработки сигнала и корпус. Принципиально электрические датчики давления подразделяются на:

Резистивный или тензорезистивный датчик давления — это устройство, чувствительный элемент которого изменяет свое электрическое сопротивление под действием деформирующей нагрузки. Тензорезисторы устанавливаются на чувствительную мембрану, которая под давлением изгибается, и изгибает прикрепленные к ней тензорезисторы. Сопротивление тензорезисторов меняется, и соответственно меняется величина тока цепи первичного преобразователя.

Растяжение проводящих элементов каждого тензорезистора приводит к росту длины и уменьшению поперечного сечения, в результате сопротивление растет. При сжатии — наоборот. Относительные изменения сопротивления измеряются тысячными долями, поэтому в схемах обработки сигнала используются прецизионные усилители с АЦП. Так деформация преобразуется в изменение электрического сопротивления полупроводника или проводника, и далее — в сигнал напряжения.

Тензорезисторы обычно представляют собой зигзагообразный проводящий или полупроводящий элемент, нанесенный на гибкую подложку, которая приклеивается к мембране. Подложка как правило — из слюды, бумаги или полимерной пленки, а проводящий элемент — из фольги, тонкой проволоки или полупроводника, напыленного в вакууме на металл. Соединение чувствительного элемента тензорезистора с измерительной цепью осуществляется при помощи контактных площадок или проволочных выводов. Сами тензорезисторы имеют обычно площадь от 2 до 10 кв.мм.

Читать еще:  Подогрев двигателя 220в на лада веста

Тензорезистивые датчики отлично подойдут для оценки уровня давления, силы нажатия и измерения веса.

Следующий тип электрического датчика давления — пьезоэлектрический . В качестве чувствительного элемента здесь выступает пьезоэлемент. Пьезоэлемент на основе пьезоэлектрика генерирует электрический сигнал при деформации, это так называемый прямой пьезоэффект. Пьезоэлемент помещается в измеряемую среду, и тогда ток в цепи преобразователя будет по величине пропорционален изменению давления в этой среде.

Поскольку для возникновения пьезоэффекта требуется именно изменение давления, а не постоянное давление, то данный тип датчиков давления годится лишь для измерения давления в динамике. Если же давление будет постоянным, то процесса деформации пьезоэлемента не произойдет, и ток не будет пьезоэлектриком сгенерирован.

Применяются пьезоэлектрические датчики давления, например, в первичных преобразователях скорости потока вихревых счетчиков воды, пара, газа и других однородных сред. Такие датчики монтируют попарно в трубопровод с условным проходом от десятков до сотен миллиметров за телом обтекания и так регистрируют вихри, частота и количество которых оказываются пропорциональны объемному расходу и скорости потока.

Далее рассмотрим пьезорезонансные датчики давления . В пьезорезонансных датчиках давления работает обратный пьезоэффект, при котором пьезоэлектрик деформируется под действием подаваемого напряжения, и чем больше напряжение, тем сильнее деформация. В основе датчика — резонатор в форме пластины из пьезоэлектрика, с двух сторон которой нанесены электроды.

При подаче на электроды переменного напряжения, материал пластины вибрирует, изгибаясь то в одну, то в другую сторону, и частота вибрации равна частоте подаваемого напряжения. Однако если теперь пластину деформировать, подействовав на нее внешней силой, например посредством чувствительной к давлению мембраны, то частота свободных колебаний резонатора изменится.

Так, собственная частота резонатора отразит величину давления на мембрану, которая давит на резонатор, приводя к изменению частоты. В качестве примера можно рассмотреть датчик абсолютного давления на базе пьезорезонанса.

В камеру 1 через штуцер 12 передается измеряемое давление. Камера 1 отделена мембраной от чувствительной измерительной части прибора. Корпус 2, основание 6 и мембрана 10 соединены герметично между собой, образуя вторую герметичную камеру. Во второй герметичной камере на основании 6 закреплены держатели 9 и 4, второй из которых прикреплен к основанию 6 при помощи перемычки 3. Держатель 4 служит для фиксации чувствительного резонатора 5. Опорный резонатор 8 зафиксирован держателем 9.

Под действием измеряемого давления, мембрана 10 давит через втулку 13 на шарик 14, который также закреплен в держателе 4. Шарик 14 давит в свою очередь на чувствительный резонатор 5. Провода 7, закрепленные в основании 6, соединяют резонаторы 8 и 5 с генераторами 16 и 17 соответственно. Для формирования сигнала, пропорционального величине абсолютного давления служит схема 15, которая из разности частот резонаторов формирует выходной сигнал. Сам датчик размещен в активном термостате 18, в котором поддерживается постоянная температура 40 °C.

Одними из наиболее простых являются емкостные датчики давления . Два плоских электрода и зазор между ними образуют конденсатор. Один из электродов — мембрана, на которую действует измеряемое давление, что и приводит к изменению толщины зазора между, по сути, обкладками конденсатора. Общеизвестно, что емкость плоского конденсатора изменяется с изменением величины зазора при постоянной площади обкладок, поэтому для фиксации даже очень малых изменений давления емкостные датчики оказываются весьма и весьма эффективными.

Малогабаритные емкостные датчики давления позволяют измерять избыточное давление в жидкостях, газах, в паре. В различных технологических процессах с применением гидравлических и пневматических систем, в компрессорах, в насосах, на станках — во множестве промышленных задач оказываются полезными емкостные датчики давления. Конструкция датчика устойчива к перепадам температур и вибрациям, невосприимчива к электромагнитным помехам и агрессивным условиям среды.

Еще один тип электрических датчиков давления, отдаленно похожих на емкостные — индуктивные или магнитные датчики . Проводящая мембрана, чувствительная к давлению, расположена на некотором расстоянии от тонкого Ш — образного магнитопровода, на среднем керне которого намотана катушка. Между мембраной и магнитопроводом выставлен определенный воздушный зазор.

Когда на катушку подается напряжение, ток в ней создает магнитный поток, который проходит как через сам магнитопровод, так и через воздушный зазор и через мембрану, замыкаясь. Поскольку магнитная проницаемость в зазоре приблизительно в 1000 раз меньше, чем в магнитопроводе и в мембране, то даже небольшое изменение толщины зазора приводит к ощутимому изменению индуктивности цепи.

Под действием измеряемого давления чувствительная мембрана претерпевает изгиб, и комплексное сопротивление обмотки изменяется. Преобразователь конвертирует это изменение в электрический сигнал. Измерительная часть преобразователя выполнена по мостовой схеме, где в одно из плеч включена обмотка датчика. Посредством АЦП сигнал с измерительной части переводится в пропорциональный измеряемому давлению электрический сигнал.

Последний тип датчиков давления, который мы рассмотрим, — оптоэлектронные датчики . Они довольно просто детектируют давление, имеют высокую разрешающую способность, обладают высокой чувствительностью, и термостабильны. Работающие на основе интерференции света, использующие для измерения малых перемещений интерферометр Фабри-Перо, эти датчики особо перспективны. Кристалл оптического преобразователя с диафрагмой, светодиод, и детектор, состоящий из трех фотодиодов — вот основные части такого датчика.

К двум фотодиодам пристроены оптические фильтры Фаби-Перо, имеющие небольшую разницу в толщине. Эти фильтры представляют собой кремниевые зеркала с отражением от передней поверхности, покрытые слоем оксида кремния, на поверхность которой нанесен тонкий слой алюминия.

Оптический преобразователь похож на емкостной датчик давления, диафрагма, сформированная методом травления в подложке из монокристаллического кремния, покрыта тонким слоем металла. На нижнюю сторону стеклянной пластины также нанесено металлическое покрытие. Между стеклянной пластиной и кремниевой подложкой существует зазор шириной w, получаемый при помощи двух прокладок.

Два слоя металла формируют интерферометр Фабии-Перо с переменным воздушным зазором w, в состав которого входят: подвижное зеркало, расположенное на мембране, меняющее свое положение при изменении давления, и параллельное ему стационарное полупрозрачное зеркало на стеклянной пластине.

Примерно на этой основе фирма FISO Technologies производит микроскопические чувствительные датчики давления, диаметром всего 0,55 мм, легко проходящие сквозь игольное ушко. При помощи катетера мини-датчик вводится в исследуемый объем, внутри которого и измеряется давление.

Оптическое волокно связано с интеллектуальным сенсором, в котором под управлением микропроцессора включается источник монохроматического света, вводимого в волокно, измеряется интенсивность обратно отраженного светового потока, по калибровочным данным вычисляется внешнее давление на датчик и выводится на дисплей. В медицине, например, такие сенсоры применяют для контроля внутричерепного давления, для измерений давления крови в легочных артериях, куда иным способом невозможно добраться.

Разновидности датчиков давления воздуха и способы их установки

В настоящее время, на современном рынке существует конструктивное многообразие измерительных устройств – датчиков давления воздуха, отвечающих за изменение такого параметра, как давление воздуха в системе. Они представляют собой элемент, физические свойства которого, показывают разное значение при изменении давления среды, которую измеряет датчик (в нашем случае воздух). Среди линейки видов данных устройств, порой сложно правильно выбрать нужную модель. Попробуем помочь разобраться с этим вопросом.

Описание и назначение

Датчики давления воздуха могут измерять изменение атмосферного давления и давление в конструктивной схеме какой — либо установки. Устройства контроля давления воздуха предназначены для непрерывного измерения и преобразования давления воздушной среды в выходной сигнал в виде напряжения или тока.

Читать еще:  Если отключить датчик холостого хода что будет

Для замеров могут использоваться механические, тепловые и электронные рабочие элементы. Последние дают более точные показания и, все чаще, находят применение в современных реалиях.

Сферы применения

Одной из сфер применения датчиков является измерение колебаний атмосферного давления. Эти данные необходимы для метеорологических служб, в медицинских целях, при наблюдении за метеозависимыми больными. Замеры атмосферного давления метеорологами позволяют установить направление ветров и движение циклонных областей. Атмосферные датчики отличаются по виду рабочего элемента – ртутные и электронные.

Также, широкое применение данные устройства получили для замера давления воздуха и других газов в автомобилестроении, строительстве, химической и легкой промышленности. Любой автоматизированный промышленный процесс, зачастую, не обходится без датчиков давления.

Классификация, конструкция и принцип действия

В конструкцию любого датчика давления входят такие составляющие:

  • Преобразователь физической величины (давления) с рабочим элементом.
  • Электронная схема для обработки и усиления выходного сигнала.
  • Защитное покрытие (корпус).

Рассмотрим классификацию датчиков по принципу действия.

Волоконно-оптический

Представляет собой устройство, рабочим элементом которого служит нить из прозрачного материала, являющаяся переносчиком световых волн методом их отражения от стенок волокна. Данный тип устройств дает довольно точные измерения давления и не имеет зависимости от температуры окружающей среды. Диэлектрический корпус устраняет влияние электромагнитных полей на работу преобразователя. Современные оптические волокна изготавливаются из кварца.

Работа датчика основана на изменении амплитуды и направления электромагнитного поля (поляризации) световой волны, которая движется по рабочему элементу. При изменении давления, действующего на рабочий элемент, его диаметр уменьшается, а длина увеличивается на величину, измеряемую в нанометрах (нм). Деформация приводит к изменению свойств светового луча, проходящего по оптоволокну, что дает разницу в показаниях до и после приложения силы к чувствительному элементу.

Сигнал от волокно-оптического устройства поступает в специальный усилитель, который может принимать сигналы от нескольких датчиков и находиться на расстоянии от них.

Данные устройства обладают преимуществами перед другими видами:

  • Возможность работы на расстоянии от объекта измерения.
  • Передача по одному каналу большего количества информации за больший промежуток времени (мультиплексирование).
  • Отсутствие воздействия электромагнитных помех.
  • Нет необходимости в подаче электричества в зону замеров.
  • Большой срок службы в стабильном состоянии.

К датчикам, применяющим в своей работе световые волны, можно отнести и оптоэлектронные системы. В них используются прозрачные многослойные плоскости, изменяющие свойства света под действием давления. Световая волна фиксируется фотоэлементом, который передает сигнал на электронную схему.

Магнитный

Устройство состоит из Е- образной плоскости с индуктивной катушкой и проводящей мембраны, на которую воздействует давление. Работа датчика основана на изменении электромагнитной индукции катушки при изменении зазора между плоскостью и мембраной.

Недостатки данных преобразователей:

  • Функционирование на переменном токе.
  • Зависимость точности показаний от равномерности частоты напряжения питания.
  • Погрешность показаний при изменении температуры.
  • Влияние электромагнитных полей на показания.
  • Погрешность при изнашивании (старении) рабочих элементов.

Магнитные датчики производятся в двух исполнениях – по одинарной и дифференциальной схеме. Последняя имеет преимущества. В дифференциальном способе применяются 2 контура, которые фиксируют изменение величины электромагнитной индукции с противоположным знаком полярности. Во второй конструкции рабочий элемент с катушкой может иметь разную форму (Е- образную и цилиндрическую).

Емкостной

Данное устройство преобразует давление в изменение емкости конденсатора, выступающего в роли рабочего элемента. Специальная развязка (мультивибратор с компаратором) преобразует изменение величины емкости на рабочем элементе в выходной сигнал.

Емкостные устройства изготавливают с одним и двумя конденсаторами. Первые более подвержены воздействию окружающей среды (влажность и температура воздуха), вторые немного сложнее в конструкции, однако делают более точные замеры.

Преобразователи имеют конструкцию с одним либо двумя электродами, расположенными в корпусе и, изолированными от него. Между камерами с электродами расположена тонкая металлическая пластина, которая, совместно с электродами, дает емкость переменного значения, подключенную в схему измерения физического параметра. При подаче воздуха с одной стороны датчика, пластина смещается, изменяется значение емкости и устройство показывает величину избыточного давления.

Ртутный

Одним из простейших способов измерения давления воздуха либо другого газа является ртутный датчик, напоминающий формой английскую букву U. Принцип его действия основан на всем известном свойстве сообщающихся сосудов.

Через трубку вышеуказанной формы протягивается проводник, подключенный в мостовую схему, не выдающую сигнала при равнозначных сопротивлениях на обеих ветвях проводника, подключенных в схему. Половина трубки заполняется ртутью. При увеличении давления на одну из сторон трубки, с этой стороны ртуть опускается, а с обратной – поднимается. После данного физического воздействия ртутью появляется разность сопротивлений провода в одной и другой ветви, что провоцирует включение мостовой схемы и выходного сигнала.

К недостаткам данного устройства относится плохая защита от механических воздействий и большие габариты.

Еще один вид ртутного датчика – чашечный барометр. Состоит из запаянной трубки, присоединенной к емкости со ртутью. При изменении атмосферного давления, увеличивается или уменьшается давление на емкость и столбик ртути в трубке.

Пьезоэлектрический

Название устройства говорит о том, что его работа основана на преобразовании энергии механического воздействия в электрическую при помощи кристаллических материалов. При давлении на такой материал, между его сторонами появляется разность потенциалов. Этот способ измерения давления удобен только при быстром изменении его величины, так как при длительном приложении постоянной силы к пьезоэлектрику, его выходной сигнал постепенно гаснет.

К достоинствам устройства относятся:

  • Простота конструкции.
  • Дешевизна.
  • Отсутствие необходимости в подаче питания.

Датчик состоит из двух пластин из пьезоматериала, между которыми находится металлический электрод, соединенный с выходной проводкой. Пластины изолированы от корпуса, служащего «массой». Гайка из диэлектрического материала отделяет выходной провод от корпуса.

Пьезорезонансный

Принцип действия похож на предыдущий, но в качестве рабочего элемента применяются кристаллы кварца. Кристалл крепится к рабочей пластине, передающей давление. При деформации плоскости, изменяется частота колебаний кристалла. Данные свойства дают несомненные преимущества этому виду преобразователей:

  • Точность измерений.
  • Долговечность.
  • Работа с широкой разницей температур.
  • Возможность управления сигналом микропроцессором.

Пьезорезонансные элементы получили большую популярность для точной калибровки измеряемой физической величины, применяются в газовых скважинах, барометрах.

Резистивный

Эти преобразователи недорогие и простые по конструкции. Недостатком таких датчиков служит пониженная точность измерения давления. Принцип действия заключается в изменении сопротивления резистора при надавливании на рабочий элемент.

В его состав входит пленка из полупроводникового материала, проводник со связанными электродами, пластина, создающая пространство между проводником и полупроводником, слои из диэлектриков.

При приложении силы на полупроводниковую пленку, она начинает контактировать с электродами проводника через пластину, сохраняющую зазор, датчик начинает выдавать сигнал. Эти приборы не точные, их можно применять скорее для регистрации давления, но не для его измерения.

Советы по выбору и применению

При выборе датчика для своих потребностей нужно учитывать такие факторы:

  • Наличие воздействий на оборудование извне (электромагнитные поля, вибрации, агрессивная среда).
  • Диапазон измеряемой величины.
  • Температурные показатели измеряемого воздуха и окружающей среды.
  • Точность требуемых замеров.
  • Целесообразный тип выходного сигнала.
  • Влажность помещения, где будет установлен прибор.

Также, необходимо учесть вид измеряемого давления, его разброс, класс защиты прибора и материал корпуса.

Ссылка на основную публикацию
Adblock
detector