12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Силы действующие на авто

Силы, действующие на автомобиль

Крутящий момент двигателя, подведенный через механизмы трансмиссии к ведущим колесам автомобиля , вызывает их вращение. В месте соприкосновения колеса с дорогой от крутящего момента возникает окружная сила , а со стороны дороги — касательная реакция (см. рис. 72), равная по величине окружной силе, но направленная в противоположную сторону. Суммарная касательная реакция ведущих колес передается на задний мост и вызывает движение всего автомобиля, поэтому называется тяговой силой.

Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу тепления ведущих колес с дорогой.

Если тяговая сила превысит силу сцепления, то ведущие колеса будут пробуксовывать.

Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен чесу, приходящемуся на ведущие колеса автомобиля. При торможении сцепной вес автомобиля равен его весу, приходящемуся на затормаживаемые колеса.

Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шины (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля.

Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно с увеличением скорости движения и при изношенных шинах.

Например, для сухой дороги с асфальтобетонным покрытием коэффициент сцепления равен 0,7—0,8, а для мокрой — 0,35 — 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1—0,2.

Сила тяжести , или вес, автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45—0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому полный вес легкового автомобиля распределяется по его осям примерно поровну, т. е. сцепной вес равен 50% полного веса. Высота расположения центра тяжести у грузовых автомобилей 0,65—1,0 м. У полностью груженых грузовых автомобилей сцепной вес составляет 60— 75% полного веса. У автомобилей со всеми ведущими осями сцепной вес равен полному весу автомобиля.

При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение полного веса автомобиля между его осями: при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля — передние колеса.

Кроме того, перераспределение полного веса автомобиля между передними и задним и колесами имеет место при движении на подъем и под уклон.

Перераспределение нагрузки, изменяя величину сцепного веса, влияет на сцепление колес с дорогой и устойчивость автомобиля.

Силы сопротивления движению автомобиля

Тяговая сила на ведущих колесах обеспечивает преодоление внешних сил, возникающих при движении автомобиля.

При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха.

При движении автомобиля в гору ( рис. 138 ) возникает сила сопротивления подъему, а при разгоне автомобиля — сила сопротивления разгону (сила инерции).

Рис. 138. Схема сил, действующих на автомобиль при равномерном движении на подъеме

Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению полного веса автомобиля на коэффициент сопротивления качению.

Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля.

Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014—0,020, для сухой грунтовой дороги — 0,025—0,035.

На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах.

Коэффициент сопротивления качению возрастает с ростом скорости движения, а также с увеличением как крутящего, так и тормозного момента.

Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля.

Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь — колеей колес (расстоянием между центрами шин) и высотой автомобиля.

Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).

Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, сопротивление воздуха увеличивается в 4 раза).

Сила сопротивления подъему тем больше, чем больше вес автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах пли величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.

На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Если коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% от полного веса автомобиля.

Сила сопротивления разгону зависит от массы автомобиля, его ускорения (прироста скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.

Силы, действующие на автомобиль

Силы, действующие на автомобиль

Автомобиль перемещается с определенной скоростью в результате действия на него движущих сил и сил, оказывающих сопротивление движению (рис. 1).

К силам, препятствующим движению автомобиля, относятся: силы сопротивления качению Рf, сопротивление, создаваемое подъемом дороги Рa, сопротивление воздуха Pw, сопротивление сил инерции PJ. Для преодоления этих сил автомобиль оснащен источником энергии — двигателем. Возникающий в результате работы двигателя крутящий момент передается через силовую передачу и полуоси на ведущие колеса автомобиля. Их вращению препятствует сила трения, которая появляется между колесами и поверхностью дороги.

Во время вращения ведущие колеса создают окружные силы, которые действуют на дорогу, стремясь как бы оттолкнуть ее назад. Дорога, в свою очередь, оказывает равное противодействие (касательную реакцию) на колеса, что и вызывает движение автомобиля.

Силу, которая приводит автомобиль в движение, называют силой тяги и обозначают Ph. Связь между этими величинами или предельное условие движения автомобиля, при котором обеспечивается равновесие между силой тяги и силами сопротивления движения, можно выразить формулой

Это уравнение называется уравнением тягового баланса и позволяет установить, как тяговая сила распределяется по различным видам сопротивлений.

Сопротивление качению шины по дороге является следствием затрат энергии на гистерезисные (внутренние) потери в шине и на образование колеи (внешние) потери. Кроме того, часть энергии теряется в результате поверхностного трения шин о дорогу, сопротивления в подшипниках ступиц ведомых колес и сопротивления воздуха вращению колес. Ввиду сложности учета всех факторов сопротивление качению колес автомобиля оценивают по суммарным затратам, считая силу сопротивления качению внешней по отношению к автомобилю. При качении эластичного колеса по твердой дороге внешние потери незначительны. Слои нижней части шины то сжимаются, то растягиваются. Между отдельными частицами шины возникает трение, выделяется тепло, которое рассеивается, и работа, затрачиваемая на деформацию шины, не возвращается полностью при последующем восстановлении формы шины. При качении эластичного колеса деформации в передней части шины возрастают, а в задней — уменьшаются.

Когда жесткое колесо катится по мягкой деформируемой дороге (грунт, снег), потери на деформацию шины практически отсутствуют и энергия затрачивается лишь на деформацию дороги. Колесо врезается в грунт, выдавливает его в сторону, спрессовывая отдельные частицы, образуя колею.

Когда же деформируемое колесо катится по мягкой дороге, энергия затрачивается на преодоление как внутренних, так и внешних потерь.

При качении упругого колеса по мягкой дороге деформация его меньше, чем при качении по твердой дороге, а деформация грунта меньше, чем при качении жесткого по тому же грунту.

Величина силы сопротивления качению может быть определена из формулы

Pf — сила сопротивления качению;

G — вес автомобиля;

а — угол, характеризующий крутизну подъема или спуска;

f — коэффициент сопротивления качению, который учитывает действие сил деформации шин и покрытия, а также трение между ними в различных дорожных условиях.

Величина коэффициента сопротивления качению колеблется от 0,012 (асфальтобетонное покрытие) до 0,3 (сухой песок).

Рис. 1. Силы, действующие на движущийся автомобиль

Сопротивление подъему. Автомобильные дороги состоят из чередующихся между собой подъемов и спусков и крайне редко имеют горизонтальные участки большой длины. Крутизну подъема характеризуют величиной угла а (в градусах) или величиной уклона дороги t, представляющей собой отношение превышения Н к заложению В (см. рис. 1):

Вес автомобиля G, движущегося на подъеме, можно разложить на две-составляющие силы: G sina, направленную параллельно дороге, и Gcosa, перпендикулярную к дороге. Силу G sin a называют силой сопротивления подъему и обозначают Ра.

На автомобильных дорогах с твердым покрытием углы подъема невелики и не превышают 4 — 5°. Для таких малых углов можно считать

sin а, тогда Ра — G sin а = Gi.

При движении на спуске сила Ра имеет противоположное направление и действует как движущая сила. Угол а и уклон i считают положительными на подъеме и отрицательными при движении на спуске.

У современных автомобильных дорог нет четко выраженных участков с постоянным уклоном; их продольный профиль имеет плавные очертания. На таких дорогах уклон и сила Р непрерывно меняются в процессе движения автомобиля.

Сопротивление неровностей. Ни одно дорожное покрытие не является абсолютно ровным. Даже новые цементобетонные и асфальтобетонные покрытия имеют неровности высотой до 1 см. Под действием динамических нагрузок неровности быстро увеличиваются, уменьшая скорость автомобиля, сокращая срок его службы и увеличивая расход топлива. Неровности создают дополнительное сопротивление движению.

При попадании колеса в длинную впадину оно ударяется о ее дно и подбрасывается вверх. После сильного удара колесо может отделиться от покрытия и снова удариться (уже с меньшей высоты), совершая затухающие колебания. Переезд через короткие впадины и выступы сопряжен с дополнительной деформацией шины под действием силы, возникающей при ударе о выступ неровности. Таким образом, движение автомобиля по неровностям дороги сопровождается непрерывными ударами колес и колебаниями осей и кузова. В результате происходит дополнительное рассеивание энергии в шине и деталях подвески, достигающее иногда значительных величин.

Дополнительное сопротивление, вызываемое неровностями дороги, учитывают, условно увеличивая коэффициент сопротивления качению.

Величины коэффициента сопротивления качению f и уклона i в совокупности характеризуют качество дороги. Поэтому часто говорят о силе сопротивления дороги Р, равной сумме сил Рf и Ра:

Р = Pf — f Ра = G (f cos а — f sin а)

Выражение, стоящее в скобках, называют коэффициентом сопротивления дороги и обозначают буквой Ф. Тогда сила сопротивления дороги

Р = G (f cos a — f sin а) = G ф.

Сопротивление воздуха. При движении автомобиля на него оказывает сопротивление и воздушная среда. Затраты мощности на преодоление сопротивления воздуха складываются из следующих величин:

— лобового сопротивления, появляющегося в результате разности давлений спереди и сзади движущегося автомобиля (около 55 — 60 % всего сопротивления воздуха);

— сопротивления, создаваемого выступающими частями: подножками, крыльями, номерным знаком (12 — 18 %);

— сопротивления, возникающего при прохождении воздуха через радиатор и подкапотное пространство (10–15 %);

— трения наружных поверхностей о близлежащие слои воздуха (8 — 10 %);

— сопротивления, вызванного разностью давлений сверху и снизу автомобиля (5 — 8 %).

При увеличении скорости движения увеличивается и сопротивление воздуха.

Прицепы вызывают увеличение силы сопротивления воздуха вследствие значительного завихрения воздушных потоков между тягачом и прицепом, а также из-за увеличения наружной поверхности трения. В среднем можно принять, что применение каждого прицепа увеличивает это сопротивление на 25 % по сравнению с одиночным автомобилем.

Кроме сил сопротивления дороги и воздуха влияние на движение автомобиля оказывают силы инерции Р). Всякое изменение скорости движения сопровождается преодолением силы инерции, и ее величина тем больше, чем больше обитая м, аееа автомобиля:

Время равномерного движения автомобиля обычно мало по сравнению с общим временем его работы. Так, например, при работе в городах автомобили движутся равномерно 15 — 25 % времени. От 30 % до 45 % времени занимает ускоренное движение автомобиля и 30 — 40 % — движение накатом и торможение. При трогании с места и увеличении скорости автомобиль движется с ускорением — его скорость при этом неравномерна. Чем быстрее автомобиль увеличивает скорость, тем больше ускорение автомобиля. Ускорение показывает, как за каждую секунду возрастает скорость автомобиля. Практически ускорение автомобиля достигает 1 — 2 м/с2. Это значит, что за каждую секунду скорость будет возрастать на 1 — 2 мс.

Сила инерции изменяется в процессе движения автомобиля в соответствии с изменением ускорения. Для преодоления силы инерции расходуется часть тяговой силы. Однако в тех случаях, когда автомобиль движется накатом после предварительного разгона или при торможении, сила инерции действует по направлению движения автомобиля, выполняя роль движущей силы. Принимая это во внимание, некоторые труднопроходимые участки пути можно преодолевать с предварительным разгоном автомобиля.

Величина силы сопротивления разгону зависит от ускорения движения. Чем быстрее разгоняется автомобиль, тем большей становится эта сила. Ее величина меняется даже при трогании с места. Если автомобиль трогается плавно, то сила эта почти отсутствует, а при резком трогании она может даже превысить тяговую силу. Это приведет или к остановке автомобиля, или к буксованию колес (в случае недостаточной величины коэффициента сцепления).

В процессе работы автомобиля непрерывно меняются условия движения: тип и состояние покрытия, величина и направление уклонов, сила и направление ветра. Это приводит к изменению скорости автомобиля. Даже в наиболее благоприятных условиях (движение по усовершенствованным автомагистралям вне городов и населенных пунктов) скорость автомобиля и тяговая сила редко остаются неизменными в, течение продолжительного времени. На средней скорости движения (определяемой как отношение пройденного пути ко времени, затраченному на прохождение этого пути с учетом времени остановок в пути) сказывается помимо сил сопротивления влияние весьма большого количества факторов. К ним относятся: ширина проезжей части, интенсивность движения, освещенность дороги, метеорологические условия (туман, дождь), наличие опасных зон (железнодорожные переезды, скопление пешеходов), состояние автомобиля и т. д.

В сложных дорожных условиях может случиться так, что сумма всех сил сопротивления превысит тяговую силу, тогда движение автомобиля будет замедленным и он может остановиться, если водитель не примет необходимых мер.

Сцепление колеса автомобиля с дорогой

Для того чтобы неподвижный автомобиль привести в движение, одной силы тяги недостаточно. Необходимо еще трение между колесами и дорогой. Иначе говоря, автомобиль может двигаться лишь при условии сцепления ведущих колес с поверхностью дороги. В свою очередь, сила сцепления зависит от сцепного веса автомобиля Gv, т. е. вертикальной нагрузки на ведущие колеса. Чем больше вертикальная нагрузка, тем больше сила сцепления:

где Pсц — сила сцепления колес с дорогой, кгс; Ф — коэффициент сцепления; GK — сцепной вес, кгс. Условие движения без буксования колес

Силы действующие на автомобиль – кто управляет автомобилем?

Не только ты управляешь автомобилем — законы физики и механики исправно работают при движении автомобиля, и следует представлять себе действие различных сил, чтобы использовать их для управления или препятствовать их нарастанию.

Расположение центра тяжести

автомобиля зависит от компоновки узлов и агрегатов, и распределение веса по осям указывается в технических характеристиках. Высота груза и его размещение на автомобиле влияют на новое положение центра тяжести и новые нагрузки на оси.

Нагрузку на ось

следует уметь рассчитать для определения возможности проезда по некоторым мостам, понтонам и временным покрытиям.

На наклонной поверхности сила тяжести

раскладывается на две составляющие — одна прижимает автомобиль к дороге, а другая старается опрокинуть его вдоль дороги или поперек, в зависимости от направления уклона. Чем выше центр тяжести и чем больше угол наклона автомобиля, тем больше опрокидывающая сила.

Кроме силы тяжести и опрокидывающей силы, на автомобиль действуют другие:

сила сопротивления качению

— возникает при деформировании шины и дороги, трении шины о дорогу, трении в подшипниках колес;

сила сопротивления подъему

— определяется массой автомобиля и углом подъема;

сила инерции покоя

— при трогании и разгоне направлена против движения;

сила инерции движения

— направлена по ходу движения;

— направлена по радиусу от центра кривой поворота и стремится снести автомобиль с дороги;

сила сопротивления воздуха –

направлена против движения, величина зависит от обтекаемости автомобиля и скорости его движения;

сильного бокового ветра или аэродинамического влияния потоков воздуха от большого обгоняющего или обгоняемого автомобиля — стремится снести машину с дороги; зависит от парусности — боковой площади кузова.

— возникает при движении с большой скоростью от давления потока воздуха, попадающего под передок автомобиля, стремится оторвать колеса от дороги, ухудшая сцепление колес с дорогой и управляемость;

— возникает при заносе задних или сносе передних колес;

— зависит от нагрузки на ведущие колеса, состояния и качества дорожного покрытия, давления в шинах, скорости, степени износа протектора;

— определяется величиной крутящего момента, переданного от трансмиссии на колеса, вызывает движение автомобиля за счет отталкивания колес от дороги;

— возникает при торможении двигателем или тормозными колодками;

должна быть больше

силы инерции покоя,

ведущих колес с дорогой — тогда движение автомобиля возможно. Если сила тяги на ведущих колесах больше

этих колес с дорогой, колеса буксуют.

колес с дорогой будет больше тормозной силы, то автомобиль затормаживается, если меньше — скользит юзом.

автомобиль может двигаться на высокой скорости с незначительной подачей топлива (вот почему движение на постоянной скорости 80–90 км/ч наиболее экономично), а также некоторое время с отключенным двигателем — накатом.

Рис. 1. Силы, действующие на автомобиль

Силе торможения помогают силы сопротивления качению, подъему, сопротивления воздуха, центробежная сила. Затрудняет торможение сила инерции движения, особенно растущая на уклоне.

При торможении и при движении с уклона сила тяжести переносится вперед и создает продольный опрокидывающий момент, дополнительно нагружающий переднюю ось. Эту нагрузку используют для улучшения сцепления управляемых колес с дорогой на повороте, тормозя двигателем и поворачивая колеса.

Величина центробежной силы зависит от скорости и веса автомобиля, а также радиуса поворота. Значит, уменьшить эту силу можно снижением скорости или увеличением радиуса поворота.

Снос передних и занос задних колес — боковое скольжение колес. Они могут привести к закручиванию автомобиля вокруг вертикальной оси, как волчка.

Причины заноса и сноса:

при движении — разные тяговые силы на колесах;

при торможении — разные тормозные силы на колесах одной оси, разные силы сцепления колес с дорогой, неправильное размещение груза относительно продольной оси автомобиля;

на повороте — торможение, резкий поворот управляемых колес; сила инерции превышает силу сцепления колес с дорогой.

При заносе автомобиль может опрокинуться по следующим причинам в случаях:

— поперечный уклон направлен в сторону, противоположную повороту;

— резкое прекращение заноса при упоре заднего колеса в препятствие;

— резкий поворот руля на большой скорости;

— неравномерное распределение груза или его смещение на повороте.

Упругость узлов подвески частично и кратко препятствует действию центробежной силы, допуская крен автомобиля.

Чем выше центр тяжести и уже колея, тем больше вероятность опрокидывания.

Рис. 2. Силы, действующие на автомобиль

Эксплуатационные качества: тягово-скоростные, тормозные, топливная экономичность, управляемость, устойчивость, маневренность, проходимость, — определяются способностями автомобиля использовать или преодолевать соответствующие физические силы.

Тягово-скоростные параметры определяют диапазон изменений скорости и интенсивности разгона автомобиля в различных условиях. При испытаниях замеряют семь показателей тягово-скоростных свойств: скоростная характеристика разгон — разбег, скоростная характеристика на высшей и предшествующей передачах, скоростная характеристика на дороге с переменным продольным профилем, максимальная скорость, условная максимальная скорость, время разгона на определенных участках и время разгона до заданной скорости.

На топливную экономичность оказывают влияние аэродинамические параметры автомобиля, характеристики

шин, передаточное число главной передачи,

количество передач и их передаточные числа в коробке передач.

Тормозной путь

— расстояние, которое проходит автомобиль от

до полной остановки.

— величина, на которую уменьшается скорость автомобиля за единицу времени.

Управляемость автомобиля — его способность отзываться на самые малые команды руля, а также стабилизировать направление движения после влияния небольших неровностей дорожного покрытия. Управляемость и стабилизация обеспечиваются конструктивно рулевым механизмом и установкой управляемых колес под определенными углами: продольный и поперечный угол наклона шкворня, углы развала и схождения колес. Стабилизирующие свойства имеют и шины легковых автомобилей, благодаря небольшому давлению воздуха и гибким боковинам.

Но они склонны к

при боковом прогибе шины под влиянием поперечной силы. Увод передних колес увеличивает радиус поворота, задних — уменьшает. Если угол увода задних колес больше, чем передних — автомобиль виляет, и водителю приходится корректировать направление движения.

Рис. 3. Силы, действующие на автомобиль

Для выравнивания степени увода передних и задних колес рекомендуется давление воздуха в шинах передних колес поддерживать ниже, чем в задних.

Устойчивость движения характеризуется критической скоростью криволинейного движения по опрокидыванию и заносу под воздействием поперечной составляющей силы инерции.

Поворачиваемость автомобиля — одна из их характеристик. Переднеприводные автомобили имеют недостаточную поворачиваемость, что помогает им более уверенно проходить закругления на обычных скоростях, без заноса. Заднеприводные автомобили с двигателем сзади имеют избыточную поворачиваемость.

Заднеприводные автомобили с двигателем впереди и полноприводные автомобили в обычных условиях имеют недостаточную поворачиваемость, но при изменении режимов движения, перегрузке задних колес или снижении давления в них — избыточную.

Маневренность характеризуется минимальным и габаритным радиусами поворота, а также габаритной полосой движения. Чем меньше эти радиусы, тем выше маневренность.

Габаритная полоса характеризует ширину коридора, необходимую при крутых поворотах, а также возможность движения автомобиля с прицепом или без него в проездах заданной формы и размеров. Она определяется траекторией автомобиля и сдвигом траектории прицепа к центру поворота.

Профильная проходимость — способность автомобиля преодолевать неровности и препятствия, а также вписываться в габариты дороги.

Она зависит от габаритных размеров, высоты центра тяжести, переднего и заднего углов свеса, радиуса горизонтальной проходимости, продольного и поперечного радиуса проходимости, наименьшего расстояния между низшими точками автомобиля и дорогой, продольной и поперечной устойчивости к опрокидыванию — наибольших углов преодолеваемых подъема и поперечного откоса, диаметра колес, а для автомобиля с прицепом также и углов гибкости автопоезда.

Опорная проходимость определяет способность автомобиля двигаться по мягким поверхностям. Важным условием опорной проходимости является соотношение между наибольшей силой тяги и силой сопротивления движению.

Рис. 4. Параметры проходимости

В большинстве случаев проходимость автомобиля с прицепом ограничивается недостаточной

колес с дорогой и в связи с этим невозможностью использовать максимальную силу тяги. Опорная проходимость определяется

— массой, приходящейся на ведущие колеса: чем она ниже, тем выше проходимость. Очевидно, что у внедорожников сцепная масса ниже, так как все колеса ведущие.

ведущих колес с дорогой определяется давлением массы, приходящейся на одно колесо, на площадь контакта шин с дорогой –

На рыхлых грунтах проходимость лучше, если удельное давление меньше — площадь контакта больше за счет ширины шин или снижения давления в них. На твердом покрытии проходимость выше при большом удельном давлении — меньшей площади контакта — за счет узких шин или высокого давления в них.

На льду желательно снижать удельное давление для увеличения площади контакта шины с дорогой. Шины с крупным рисунком протектора на мягких грунтах имеют большую площадь контакта и меньшее удельное давление; на твердых грунтах площадь контакта этой шины меньше, и удельное давление увеличивается.

Для движении по мягким, песчаным, торфяным грунтам, тундре и снегу применяют широкие или арочные шины либо шины с регулируемым давлением. При совпадении колеи передних и задних колес проходимость автомобиля повышается — меньше сопротивление движению. Оба вида проходимости определяются также соотношением между тяговой силой и силой сопротивления движению,

возможностью использования тяговой силы,

зависящей от силы сцепления ведущих колес с дорогой.

В статье использованы материалы из открытых источников: Автор: Волгин Владислав Васильевич – Книга: “Новейший справочник автомобилиста”

По материалам: avto-opel.com

Поделиться «Силы действующие на автомобиль – кто управляет автомобилем?»

Силы действующие на автомобиль при движении

Схема сил действующих на ведущее колесо

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

  • тяговая сила
  • сила сопротивления воздуха
  • сила сопротивления качению

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Тяговая сила

Сила сцепления колес с дорогой

У легковых автомобилей полный вес рас­пределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Сила сопротивления воздуха

  • лобового сопротивле­ния (около 55—60% всего сопротивления воздуха)
  • создаваемого выступающими частями—подножками автобуса или автомобиля, крыльями (12—18%)
  • возникающего при прохождении воздуха через радиатор и подкапотное пространство (10—15%) и др.

Передней частью автомобиля воздух сжимается и раздвигает­ся, в то время как в задней части автомобиля создается разреже­ние, которое вызывает образование завихрений.

Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движе­ния. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту авто­мобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возра­стает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).

Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а вы­ступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомоби­лей можно уменьшить силу сопротивления воздуха, закрыв грузо­вую платформу брезентом, натянутым между крышей кабины и задним бортом.

Сила сопротивления качению

Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:

  • для асфальтобетонного покрытия— 0,014—0,020
  • для гравийного покрытия—0,02—0,025
  • для песка—0,1—0,3

Сила сопротивления подъему

При движении на подъем автомобиль испытывает дополнитель­ное сопротивление, которое зависит от угла наклона дороги к гори­зонту. Сопротивление подъему тем больше, чем больше вес автомобиля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.

При движении автомобиля на спуске сила сопротивления подъему направлена в сторону движения и является движущей силой.

Читать еще:  Схема подключения катушки зажигания москвич 412
Ссылка на основную публикацию
Adblock
detector