0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Все вечные двигатели схемы

Магнитные двигатели. Виды и устройство. Применение и работа

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Читать еще:  Вибрация двигателя на холостых оборотах мазда

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

УЗУ — прототип двигателя-генератора будущего (отмененный)

  • Проект
  • Вознаграждения
  • Новости 1
  • Комментарии 2
  • Спонсоры 5
  • F.A.Q
Выберите вознаграждение

Внимание!
В презентации данного проекта нет красивых видео, шикарных дизайнерских «фишек», публикаций в СМИ и «авторитетных отзывов» различного рода экспертов.

Обращаемся ко всем неравнодушным, кто хочет приблизить «светлое будущее», поддержать наш проект!

Каждый, кто поддержит наш проект, получит убедительное доказательство, что «альтернативная энергетика» может быть эффективной и «вечные двигатели» не такая уж и сказка.

Резюме проекта.

Заявляется амбициозный проект создания прототипа электрического двигателя-генератора для транспорта будущего.

А также подготовка к серийному производству универсального зарядного устройства, которое найдёт широкое применение на бытовом уровне.

Проблемы, которые решает проект.

«Вечные двигатели» не такая уж и сказка.
Проект, относится к области так называемой «альтернативной энергетики»:

Нашей группой единомышленников созданы, испытаны и готовы к реализации опытных образцов, схема и конструкции устройства, на базе которых могут быть реализованы две перспективные, с точки зрения практического внедрения, разработки:

  • электродвигатель-генератор;
  • универсальное сверхэффективное зарядное устройство.

Наиболее востребованные ниши, в которых эти разработки могут быть использованы максимально эффективно:

  • электромобили: система быстрой подзарядки аккумуляторных батарей (АКБ);
  • электромобили: мотор-генератор, который позволит свести «запас» АКБ на борту к минимуму (по сути, только для запуска двигателя и как резерв);
  • универсальные зарядные устройства для массового использования на бытовом уровне;
  • «усилители заряда» в классических системах альтернативного энергоснабжения на базе солнечных электростанций, ветроэнергетических установок и т.д.;
  • автономные системы энергоснабжения (в том числе и мобильные) для небольших объектов — не требуется никаких «внешних» источников как в существующих на текущий момент времени «аналогах» (солнечные панели, ветряк и т.п.);
  • малые авиация и судостроение.

Наш опыт.
С 2009 года мы занимаемся изучением так называемых «вечных двигателей» — устройств, которые, якобы, вырабатывают энергии значительно больше, чем потребляют сами, или работают вовсе без потребления «внешней» энергии. Нами изучено множество схем, заявленных различными авторами как «вечные двигатели» и функционирующими на совершенно различных принципах (гравитация, магнетизм, статистическое электричество, гидравлика, механические системы и т.д.). Подавляющее большинство схем оказались или откровенным мошенничеством, или были преподнесены авторами-разработчиками как «вечные двигатели» из-за своего собственного (таких «авторов») невежества. Но были найдены и, что важно, повторены конструкции устройств, которые с точки зрения классической физики могут быть восприняты как «вечные двигатели» — КПД таких устройств, если его (КПД) считать по общепринятым методикам (и формулам) превосходит 100%. Такие устройства были нами найдены в различных нишах: механические движители, магнитные движители, электромагнитные генераторы, электрические системы с высокочастотными импульсами и некоторые другие. Несмотря на успешные многократные повторения этих схем, мы долгое время не могли такие устройства «масштабировать» — сделать рабочее устройство на большую (чем предложенный автором вариант) мощность. Наконец, в 2013 году мы разработали теорию, которая, возможно, даёт объяснения «вечным двигателям» — откуда берётся «лишняя» энергия, которая воспринимается учёными и самими авторами-разработчиками как «сверхединица» (КПД более 100%). С учётом разработанной теории мы сумели некоторые устройства «повторить» на большие мощности (чем у авторов) и выбрали оптимальные (на наш взгляд) решения для дальнейшего практического внедрения.

Мы остановили свой выбор на двух системах — импульсные системы зарядки АКБ и электрические двигатели без противо-ЭДС:

  • во-первых, несложно будет организовать серийное производство этих устройств (на существующих заводах соответствующего профиля) и начать внедрение в существующих отраслях, в которых эти устройства востребованы (транспорт, энергетика);
  • во-вторых, такие устройства привычны и понятны конечным потребителям и поэтому не будут восприниматься (при начале массового использования) как «фокусы» или «непонятное, а потому подозрительное»;
  • в-третьих, простота и надёжность конструкций, а также высокая безопасность при эксплуатации и минимальные затраты на «обслуживание» (в процессе эксплуатации) позволят массово внедрить такие разработки в короткие сроки.


Что мы предлагаем. На что нужны деньги. Сроки реализации.
Целей размещения данного проекта на ресурсе для привлечения финансирования сразу две:

  • Подготовка к серийному производству бытового универсального зарядного устройства (принцип работы см. ниже в описании макета). Требуется разработать подробный пакет технической документации, необходимой для организации серийного производства. Также требуется изготовить опытные образцы таких устройств и провести всесторонние испытания будущими потенциальными пользователями (проще говоря, раздать устройства людям и попросить их «погонять» и выдать своё мнение – какие «плюсы» и «минусы» они увидели для себя?) – с учётом результатов тестирования подготовить окончательную конструкцию устройства, которое уже передать в серийное производство. Срок реализации не более 3 (Трёх) месяцев.
  • Создание прототипа электрического мотора-генератора мощностью 5 КВт. Данный агрегат в дальнейшем (после проведения всесторонних испытаний и отладки конструктива) будет использоваться как база для создания электрических двигателей для таких видов транспорта как: автомобили, малые суда и малая авиация. Все расчёты для изготовления такого опытного прототипа (мощностью 5 КВт) готовы на 100%. Срок реализации – 4 (Четыре) месяца.


Почему мы уверены на 100% в успехе.
Мы в теме альтернативной энергетики с 2007 года.

Мы изучили и проверили почти все известные схемы так называемых «вечных двигателей».

Мы разработали собственную теорию, которая объясняет происходящие в таких конструкциях (которые ошибочно называют «вечными двигателями») физические процессы и поняли, что ничего сверхъестественного не происходит – закон сохранения энергий не нарушается, а с точки зрения классической физики происходит «неправильный учёт энергий».

Кроме того, в настоящее время возникает реальный интерес со стороны некоторых компаний (в первую очередь, энергетических) для начала использования таких конструкций в своих схемах и разработках. Несколько лет назад представители этих же компаний даже слушать не хотели наши предложения о сотрудничестве.

И у нас есть команда, проверенная годами совместного творчества и сотрудничества – за эти годы мы прошли через многие испытания, которые нас сплотили.


Описание устройства, которое взято за «базу».
В качестве подтверждения реальности осуществления задуманного в рамках настоящего проекта (подготовка к серийному производству универсального зарядного устройства и изготовление опытного образца электрического двигателя-генератора мощностью 5 КВт) привожу описание следующего макета – прототип универсального зарядного устройства на базе обыкновенного компьютерного вентилятора (кулера). Естественно, кулер немного модифицирован – это видно (см. фото) по четырём проводам вместо стандартных двух.

Данная схема известна и в своей основе имеет идеи, предложенные известными Джоном Бедини (разработчик генератора «свободной энергии» на постоянных магнитах) и Питером Линдеманом (впервые использовал кулер вместо сложной конструкции Бедини).

Макет демонстрирует сразу ДВА эффекта, которые подтверждают реальность достижения заявленных в данном проекте целей:

  • электродвигатель-генератор без противо-ЭДС – вращение кулера даёт больше электрической энергии, чем требуется на поддержание его вращения;
  • усиление мощности – во-первых, имеется свечение неоновой лампы (на это требуется не менее 110 вольт; неоновая лампа представляет собой аналог полезной нагрузки в реальных системах) и, во-вторых, представленный макет может зарядить 4 (четыре) АКБ (12 вольт, 1,2 Ампер-часа – см. фото) от одной стандартной «кроны».

Представленный макет лишь демонстрирует указанные эффекты, но достаточно убедительно.

Помимо данной схемы нами были исследованы различные варианты (более десяти!) импульсных зарядных систем, которые могут быть практически реализованы в реальных устройствах (по испытаниям одной такой системы имеется официальный протокол – испытания были проведены в МГУ и заверены официально представителем компании SGS – КПД составил 170%). Однако свой выбор мы остановили именно на этой (см. фото) конструкции из-за её чрезвычайной простоты и надёжности.

Даная схема обладает единственным «минусом» — невозможно одновременно с зарядкой АКБ питать полезную нагрузку (с этой же, заряжаемой, АКБ), АКБ нужно сначала полностью зарядить и только после этого поставить под нагрузку. Однако с помощью несложной управляющей электроники эта задача решается – заряженная АКБ переключается на нагрузку, а на её место (на зарядку) «ставится» другая АКБ. Такое решение нами реализовано и проверено.

Подробные схему и/или инструкцию по самостоятельной сборке представленного (см. фото) макета предоставим всем заинтересованным, кто поддержит наш проект.

ВАЖНЫЕ ЗАМЕЧАНИЯ (вместо Послесловия).

Каждый вариант предусмотренных вознаграждений (за поддержку данного проекта) включает в себя (помимо вознаграждения для конкретного варианта) также вознаграждения, предусмотренные всеми предыдущими (на меньшие суммы участия) вариантами.

Читать еще:  Что такое твердотопливный двигатель

Если Вы за развитие цивилизации по экологически чистому пути, то, пожалуйста, поддержите наш проект! И расскажите о проекте как можно большему числу своих друзей и знакомых!

И в наших силах сделать мир чище, лучше и проще!

Вечный двигатель с точки зрения термодинамики

Вы будете перенаправлены на Автор24

Вечный двигатель в физике считается воображаемым и неограниченно долго действующим устройством, позволяющим получать в большем количестве (в сравнении с количеством сообщенной ему извне энергии) полезную работу (речь идет о вечном двигателе первого рода).

Рисунок 1. Схема вечного двигателя. Автор24 — интернет-биржа студенческих работ

Также при нем возможно получение тепла от одного резервуара и достижение полного превращения его в работу (вечный двигатель второго рода).

Понятие и разновидности вечного двигателя

В физике выделяют два типа вечного двигателя:

  1. Вечный двигатель первого рода (действующее неограниченно долго устройство, которое может обладать способностью бесконечного совершения работы. При этом исключаются затраты топлива или других энергоресурсов. Согласно закону сохранения энергии, каждая попытка создания такого вида обречена на неуспех. Невозможность реализации такой попытки выступает постулатом о первом начале термодинамике.
  2. Вечный двигатель второго рода теоретически представляет собой неограниченно долго действующую машину, которая, будучи на ходу, оказывалась бы способной превращать в работу абсолютно все тепло, которое извлекалось бы из окружающих тел. Невозможность появления вечного двигателя второго рода выступает постулатом в формате одной из формулировок второго начала термодинамики.

Эти два начала термодинамики вводились в формате постулатов после неоднократных подтверждений в экспериментальных смыслах невозможности появления вечных двигателей. Из них, в свою очередь, были выведены многие физические теории, протестированные большим числом наблюдений и экспериментов, что не оставляет ученым каких-либо сомнений в верности таких постулатов.

Готовые работы на аналогичную тему

В частности, второе начало термодинамики может формулироваться в форме одного из следующих (эквивалентных) постулатов:

  • постулат Кельвина (исключается вероятность создания периодически действующей машины, способной к совершению механической работы только лишь посредством охлаждения теплового резервуара);
  • постулат Клаузиуса (заключенный в невозможности самопроизвольного перехода теплоты от более холодных тел к более горячим).

История возникновения идеи создания вечного двигателя

Рисунок 2. Изображение вечного двигателя. Автор24 — интернет-биржа студенческих работ

Попытки исследовать место, причины и время возможного возникновения идеи вечного двигателя представляют весьма сложную задачу. Также довольно затруднительным становится попытка назвать первого автора данной идеи.

К наиболее ранним сведениям о вечном двигателе ученые относят упоминание, которое можно встретить у индийского астронома Бхаскары, также отдельные заметки встречаются в арабских рукописях XVI в., которые сохраняются в Оксфорде, Лейдене, Готе.

На сегодня в качестве прародины первых вечных двигателей по праву выступает Индия. Так, Бхаскара в своих произведениях описывает колесо с прикрепленными по ободу наискосок длинными и узкими сосудами, заполненными наполовину ртутью. Принцип действия такого механического двигателя базировался на разнице моментов сил тяжести, формируемых жидкостью, способной перемещаться в сосудах, помещенных на окружность колеса.

Бхаскара обосновывает процесс вращения колеса достаточно просто: «наполненное подобным образом жидкостью колесо, являясь насаженным на ось, что лежит на двух неподвижных опорах, непрерывно вращается независимым образом».

Первые проекты вечного двигателя на территории Европы соотносятся с эпохой активного развития механики (примерно к XIII в.) К XVI—XVII векам идея вероятного появления вечного двигателя обрела статус особенно широкого распространения.

В этот временной период наблюдался быстрый рост количества проектов вечных двигателей, подаваемых для рассмотрения в патентные ведомства европейских стран (так в числе рисунков Л. Да Винчи была обнаружена гравюра с нанесением чертежа вечного двигателя).

Причины невозможности создания вечного двигателя с точки зрения термодинамики

Рисунок 3. Невозможность вечного двигателя. Автор24 — интернет-биржа студенческих работ

Первый закон термодинамики считается законом энергетического сохранения, согласно ему, энергия не может быть ни созданной, ни уничтоженной, она является просто переходящей из одного формата в другой.

С целью содержания механизма в постоянном движении, приложенная энергия обязана сохраняться в подобном механизме, исключая какие-либо потери. Именно эта причина исключает вероятность создания вечного двигателя.

С целью возможности построения вечного двигателя (при теоретическом допущении) важно соблюдение нескольких условий.

У машины должны отсутствовать какие-либо «трущиеся» части, то есть любые движущиеся части не должны прикасаться к другим, поскольку это допускает вероятность трения, которое может спровоцировать потерю энергии машиной.

В условиях соприкосновения частей, появляется тепло, которое и будет являться энергией, потерянной машиной. При этом ученые исключают существование идеально гладких объектов.

Машина должна функционировать в безвоздушном вакууме, что диктуется первым условием. Ее эксплуатация в любом месте спровоцирует потерю энергии по причине трения между движущимися частями и воздухом. Несмотря на незначительность энергопотерь из-за трения воздуха, в случае с вечным двигателем, это представит серьезную проблему.

Так, даже при существовании минимальных энергопотерь, машина станет замедляться и в конечном итоге, остановится совсем даже по прошествии большого количества времени. Машина также не должна издавать каких-либо звуков, поскольку звук также представляет форму энергии, а появление звука будет означать, что она также фактически потеряла энергию.

Двигатели второго рода, задействующие теплоту окружающих тел, не станут противоречием закону сохранения энергии. Но подобные нехитрые конструкции оказываются бессильными перед вторым началом термодинамики: в рамках замкнутой системы самопроизвольный переход теплоты оказывается невозможным (от более холодных тел к горячим). Для этого требуется некий посредник. А для его работы понадобится энергия из внешнего источника.

Но самое интересное, что создание вечного двигателя может превратиться в бессмысленную идею. Ученые рассчитывают на возможность получения бесплатного источника энергии таким образом, однако, в действительности, будет получено столько энергии, сколько изначально было направлено в такой двигатель.

«Вечные двигатели» и их создатели. Павел Соловьев

26 июня исполняется 102 года со дня рождения советского и российского конструктора Павла Александровича Соловьева, основоположника газотурбинного двигателестроения в СССР, создателя пермской школы конструирования. Его именем назван двигатель ПС-90А, последняя работа Соловьева, один из лучших моторов для дальнемагистральной авиации.

С самого начала карьеры в 1940 году и до последних дней Павел Александрович был связан с работой пермского ОКБ-19 (сегодня «ОДК-Авиадвигатель», входит в Ростех), где прошел путь от конструктора до руководителя бюро. Под началом Соловьева было разработано и запущено в серию не менее 15 авиадвигателей различных схем и назначений, включая ряд модификаций.

Солдат «войны моторов»

Местом рождения будущего создателя авиамоторов стала деревня на Волге в Ивановской области. Павел Соловьев был одним из пяти детей в крестьянской семье. Несмотря на то что мальчику приходилось много помогать по хозяйству, он находил время для чтения книг. После окончания 9 классов школы Соловьев поступает в Рыбинский авиационный институт, который заканчивает с отличием.

В предвоенном 1940 году Соловьев приходит на должность конструктора в опытно-­конструкторский цех (ОКЦ) завода №19 имени Сталина города Молотова (ныне АО «ОДК­-Авиадвигатель», г. Пермь). Великую Отечественную войну называли «войной моторов», и на коллективы ОКБ, занимавшихся разработкой авиадвигателей, тогда легла гигантская ответственность и нагрузка. Напряженный творческий труд в военные годы закалил молодого конструктора и способствовал его быстрому профессиональному росту — уже в возрасте 31 года, в 1948 году, Павел Соловьев становится первым заместителем главного конструктора завода, а его старшим товарищем и учителем был выдающийся конструктор Аркадий Дмитриевич Швецов.

При непосредственном участии Соловьева во время войны создается серия двухрядных авиамоторов АШ-82/83. Эти двигатели устанавливались на истребителях Ла‑5 и Ла‑7, штурмовиках Су-2, бомбардировщиках Ту-2, Пе-2 и Пе‑8, вклад которых в победу в Великой Отечественной войне сложно переоценить.

От поршней к газотурбинам

После войны ОКЦ завода №19 становится основным в СССР разработчиком поршневой техники для нужд военной и гражданской авиации. В 1947 году создается самый мощный серийный поршневой двигатель АШ-73ТК для дальнего четырехмоторного стратегического бомбардировщика Ту-4. Всего до 1953 года было выпущено 1200 бомбардировщиков различных модификаций, стоявших на вооружении ВВС до начала 1960-х годов. В конце 1940-х — начале 1950-х началось широкое внедрение поршневых двигателей ОКБ-19 в транспортную авиацию. Помимо установленных еще в начале войны моторов М-62ИР на самолетах Ли-2, начинается массовое использование двигателей ОКБ-19 на самолетах Ил-12, Ил-14, а также на вертолетах Ми-4 и Як-24. Двигатель АШ-62ИР, который ставился на «кукурузники» Ан-2, выпускался более 60 лет.

Читать еще:  Что такое длинноходовой двигатель

В марте 1953 года уходит из жизни А.Д. Швецов, и Павел Соловьев становится главным конструктором. Эти события пришлись на переходный период в авиационном моторостроении: поршневая техника уже отживала свое, исчерпав возможности для роста, а газотурбинное направление было еще недостаточно развито. Соловьев, несмотря на свой молодой возраст, смог перенаправить работу бюро в новое русло разработки газотурбинной техники и вывести ОКБ на лидирующие позиции в стране и мире.

Период с 1953 по 1956 годы прошел под знаком поиска нужного типа и схем реактивных и газотурбинных двигателей. Важный выбор, определивший тематику ОКБ‑19 на многие годы, был сделан в середине 1955 года, когда коллектив начал проектировать первый двигатель по двухконтурной схеме Д‑20 для установки на бомбардировщике А.Н. Туполева, способном преодолевать зону ПВО на двухрежимном форсажном режиме работы двигателя. Были проведены испытания, однако в 1956 году работы над самолетом и, соответственно, над двигателем были остановлены. При этом двухконтурная схема двигателей и сегодня остается доминирующей во всем мире.

Период с 1956 по 1961 годы ознаменовался для коллектива Соловьева созданием и внедрением в эксплуатацию первого в СССР турбореактивого двухконтурного двигателя Д-20П для самолетов Ту-124. В историю Ту-124 вошел как первый реактивный пассажирский лайнер, принесший на региональные авиалинии комфорт и скорость. Другой важной разработкой тех лет стал первый в мире вертолетный газотурбинный двигатель Д‑25В для тяжелого вертолета Ми-6 и его модификаций Ми-10/10К. Ми-6 поставил 16 мировых рекордов по грузоподъемности и скорости полета, участвовал в боевых действиях в Афганистане. Создавались новые двигатели тоже рекордными темпами − с начала разработки Д-20П до запуска в серию прошло около трех лет, а вертолетная силовая установка была создана всего за 8 месяцев.

С 1963 по 1972 годы ОКБ-19 под руководством Соловьева, несмотря на сильную загруженность работой над ракетными двигателями, создает двухконтурные двигатели третьего поколения Д‑30 и Д‑30КУ/КП. Всего было выпущено более 3000 двигателей Д-30, которые устанавливались на пассажирский ближнемагистральный самолет Ту‑134, ставший самой массовой крылатой машиной в СССР. Силовая установка Д‑30КУ была создана для модернизации дальнемагистрального пассажирского самолета Ил-62, после которой он смог обеспечивать длительные беспосадочные перелеты по территории России, а также в Западное полушарие (США и Южную Америку) через Атлантический океан. Вариация установки Д‑30КП использовалась на военном транспортнике Ил-76 и его многочисленных модификациях, которые и по сей день применяются для доставки грузов МЧС и работы в зонах стихийных бедствий.

Двигатели четвертого поколения: военные и гражданские

1970-е годы в работе Павла Александровича Соловьева и его КБ были в основном посвящены созданию военного двигателя Д‑30Ф6 для истребителя-перехватчика МиГ-31, первого боевого самолета четвертого поколения в СССР. Предварительные работы по созданию сверхзвуковой установки начались в ОКБ еще в середине 1960-х годов. В работе П.А. Соловьев руководствовался принципом сочетания новаторства и преемственности. В ходе создания двигателя Д-30Ф6 была проделана большая работа в кооперации со многими предприятиями авиационной отрасли СССР. Самолеты МиГ-31 до сих пор стоят на вооружении ВКС России. В 2009 году одному из самолетов МиГ-31 авиационного гарнизона «Сокол» было присвоено почетное имя «Павел Соловьев».

Если вернуться к гражданской авиации, то уже в 1970-е годы в Советском Союзе возникла потребность в обновлении магистрального авиапарка для улучшения топливной эффективности самолетов и приведения их в соответствие международным нормам. В конце 1982 года государство открыло конкурс на унифицированный двигатель для пассажирских самолетов нового поколения Ту-204 и Ил-96. Основными соперниками в конкурсе стали двигатели НК-64 ОКБ Н.Д. Кузнецова и Д-90А ОКБ П.А. Соловьева. Победу одержали пермяки: мотор Соловьева показал лучший расход топлива, меньший вес и более низкую себестоимость. В связи с 70-летием Павла Александровича в 1987 году двигателю было присвоено его имя − ПС‑90А.

При высокой конструктивной преемственности ПС‑90А с семейством двигателей Д‑30 Соловьевым был создан качественно новый продукт — высокоэкономичный и экологичный авиационный двигатель широкого применения, по своим характеристикам ставший в один ряд с лучшими мировыми двигателями аналогичного класса. Новый двигатель ПС‑90А впервые поднял в воздух самолет Ил-96 в 1988 году, а в 1989 году — самолет Ту-204.

В настоящее время двигатели семейства ПС-90А установлены на все современные отечественные пассажирские и грузовые самолеты. Двигатель в его различных модификациях выпускается до сих пор и является первым российским авиадвигателем с наработкой более 9000 часов без съема с крыла. ПС-90А поднимает в небо самолеты специального летного отряда «Россия», предназначенные для перевозки президента России и других государственных деятелей. На базе ПС-90А также разработано семейство турбореактивных двигателей ПС-90ГП для наземного использования в составе электрогенераторных и газоперекачивающих установок.

Идеи П.А. Соловьева, реализованные в серийных двигателях пермского ОКБ-19, на многие годы определили уровень отечественного двигателестроения. Принципы, которые он использовал в работе, стали основой для новой конструкторской школы, продолжающей традиции русской инженерной мысли. Признанием научных заслуг Павла Александровича Соловьева стало присвоение ему ученого звания профессора кафедры «Авиационные двигатели» Пермского политехнического института, ученой степени доктора технических наук и почетного звания «Заслуженный деятель науки и техники РСФСР». В 1981 году Соловьев был избран членом-корреспондентом Академии наук СССР, с 1970 по 1989 годы работал депутатом Верховного Совета РСФСР, а после выхода на пенсию был назначен советником при руководстве МКБ МАП СССР. Скончался П.А. Соловьев 13 октября 1996 года. Его именем названа улица в Перми. Альма-матер Павла Александровича, Рыбинский государственный авиационный технический университет, сегодня также носит имя конструктора.

Вечный двигатель: миф или реальность?

Рассмотрение идеи разных типов и видов вечных двигателей и суть их устройства. Исследование изобретений различных ученых-изобретателей и исторических личностей, связанных с вечным двигателем. Анализ типичных ошибок и заблуждений при их создании.

  • посмотреть текст работы «Вечный двигатель: миф или реальность?»
  • скачать работу «Вечный двигатель: миф или реальность?» (курсовая работа)

Подобные документы

История и разнообразие гипотез о создании вечного двигателя. Магнитный двигатель как вариант вечного двигателя, работающего непрерывно посредством излучения магнитной энергии. Примерная схема магнитного двигателя и его модель, воплощенная на практике.

доклад, добавлен 23.12.2010

Вечный двигатель — устройство, совершающее полезную работу без приложения механических усилий и сжигания топлива: история, неудачные конструкции; патенты и авторские свидетельства; известные изобретатели. Значение вечного двигателя как источника энергии.

презентация, добавлен 23.09.2012

Создание вечного двигателя. Вечный двигатель как воображаемый, но неосуществимый двигатель, который совершает работу неограниченно долгое время. Виды моделей вечного двигателя. Основа работы двигателя – энергия. Исключение создания перпетуум-мобиле.

контрольная работа, добавлен 17.11.2010

Основные принципы построения транзисторного преобразователя для управления трехфазным асинхронным двигателем. Анализ схемной реализации устройства. Статический расчет транзисторного ключа. Расчет элементов формирующих линию включения транзисторов.

курсовая работа, добавлен 15.02.2017

Тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу поршня. Повышение мощности двигателей. Использование паровых турбин на лесопилках. Паровая турбина Лаваля. Первое судно с паротурбинным двигателем.

презентация, добавлен 23.04.2014

Рассмотрение основных элементов электрических управляемых двигателей автоматических систем. Технические характеристики однооборотных исполнительных механизмов. Профилактический осмотр и монтаж устройства. Возможные неисправности и способы их устранения.

реферат, добавлен 01.04.2012

История создания тепловых двигателей и общий принцип их действия. Виды тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Использование современных альтернативных источников энергии.

презентация, добавлен 23.02.2011

Краткое описание функциональной схемы электропривода с вентильным двигателем. Синтез контура тока и контура скорости. Датчик положения ротора. Бездатчиковое определение скорости вентильного двигателя. Релейный регулятор тока RRT, инвертор напряжения.

курсовая работа, добавлен 30.03.2011

Исследования двигателей Стирлинга для солнечных, космических и подводных энергетических установок, разработка базовых лабораторных и опытных двигателей. Основной принцип работы двигателя Стирлинга, его типы и конфигурации, недостатки и преимущества.

реферат, добавлен 26.10.2013

Анализ вклада ученых и изобретателей в развитие отечественной электротехники. Характеристика основных принципов развития энергосистемы РФ. Схема квартирного группового распределительного щита. Особенности прокладки проводов и сопутствующих им работ.

контрольная работа, добавлен 10.04.2010

  • 1
  • 2
  • 3
  • 4
  • »
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector