0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вентильный двигатель в чем отличие

Вентильные двигатели. Виды и устройство. Работа и применение

Электродвигатели, работающие от постоянного тока, обычно обладают более высокими экономическими и техническими характеристиками, по сравнению с двигателями переменного тока. Единственным серьезным недостатком является наличие щеточного механизма, существенно понижающего надежность всей конструкции, повышающего инерционность ротора, взрывоопасность двигателя, а также создает радиопомехи.

Поэтому были созданы бесконтактные двигатели, работающие от постоянного тока, которые получили название вентильные двигатели. Создание такого нового устройства стало возможным, благодаря появлению полупроводников. Щеточный механизм в этой конструкции заменен коммутатором на основе полупроводниковых элементов. Якорь является неподвижным элементом, а на роторе закреплены постоянные магниты.

Устройство и работа

В целом вентильные двигатели включают в себя три подсистемы:

  1. Электронную.
  2. Механическую.
  3. Электрическую.

В результате получается мехатронное устройство, которое позволяет сделать корпус более компактным, избавиться от дополнительных деталей, лишних преобразователей, а соответственно сделать весь привод механизма более надежным.

Вентильный электродвигатель представляет собой измененный вариант коллекторного мотора постоянного тока. Мотор имеет индуктор, расположенный на роторе, обмотка якоря находится на статоре. Электричество подается управляющими командами на статорные обмотки, в зависимости от угла поворота ротора, который определяется встроенными датчиками Холла.

Ротор

Основу этого элемента составляет многополюсный постоянный магнит, который может иметь разное количество пар полюсов (от 2 до 8), с чередованием полюсов. Поначалу для производства роторов применяли ферритовые магниты невысокой стоимости. Однако ферритовые магниты имеют недостаток в том, что у них низкое значение магнитной индукции.

Современные конструкции роторов оснащают магнитами, изготовленными из редкоземельных элементов. Они дают возможность получить большую магнитную индукцию, а также сделать ротор более компактным.

Статор

Вентильный электродвигатель обычно имеет статор, состоящий из 3-х обмоток, соединенных «звездой» без отвода от средней точки, и внешне похожий на статор асинхронного мотора. Существуют вентильные двигатели со статором с большим количеством обмоток, а кроме схемы «звезды» их могут соединять «треугольником». Трехфазная структура обмоток считается наиболее эффективной при наименьшем количестве обмоток.

Если сравнивать две рассмотренные схемы соединения, то схема «звезды» предполагает больший момент вращения и меньшие показатели противо-ЭДС, в отличие от схемы «треугольника». Поэтому «звезду» чаще всего применяют для получения больших крутящих моментов, а «треугольник» — больших скоростей вращения.

Датчики положения и термодатчик

Этот чувствительный элемент создает обратную связь, и определяет положение ротора. Такие датчики могут работать по разным принципам – эффекта Холла, фотоэлектрическому и т.д. Большое распространение получили фотоэлектрические и датчики Холла. Они не имеют инерционности и дают возможность работы без запаздывания при определении положения ротора.

Фотоэлектрический датчик в его стандартном виде имеет три стационарных фотоприемника. Они по очереди закрываются шторкой, которая крутится синхронно ротору. Двоичный код, поступающий от датчиков, фиксирует шесть разных положений ротора. Управляющее устройство преобразует сигналы датчиков в управляющие импульсы напряжений, которые в свою очередь управляют полупроводниковыми ключами.

В каждый рабочий такт мотора включены два силовых ключа, и к электроэнергии подключены две обмотки из трех. Якорные обмотки расположены со сдвигом 120 градусов, и соединены между собой так, что при управлении силовыми ключами образуется вращающееся магнитное поле.

Дополнительно в вентильном двигателе могут иметься термодатчик, тормозной механизм. Тахогенератор используется в случае работы мотора в режиме стабилизации скорости с большой точностью.

Термодатчик служит для предохранения обмоток от перегрева, и включает в себя несколько позисторов, соединенных друг с другом между собой последовательно. Позисторы – резисторы, сопротивление которых зависит от температуры, чем больше температура, тем выше их сопротивление.

Принцип действия

Контроллер вентильного двигателя подключает обмотки статора так, что направление магнитного поля статора всегда перпендикулярно направлению поля ротора. Благодаря широтно-импульсной модуляции контроллер управляет током, который проходит по обмоткам. В результате создается момент вращения ротора, который регулируется.

Виды
Вентильные двигатели бывают постоянного и переменного тока. Кроме того, их разделяют на виды по числу фаз:
  • Однофазные . Это наиболее простая конструкция вентильных двигателей с минимальным числом связей между электронной системой и мотором. К недостаткам однофазных двигателей относятся большие пульсации, невозможность пуска при некоторых положениях ротора. Однофазные моторы широко используются в механизмах, где необходима высокая скорость работы.
  • Двухфазные . Такие вентильные двигатели работают в механизмах, где обязательно наличие связи обмотки и статора. К недостаткам можно отнести большой момент вращения и сильные пульсации, способные привести к отрицательным последствиям.
  • Трехфазные . Эта дисковая конструкция мотора применяется для создания момента вращения, не применяя для этого большое число фаз. Этот вид моторов используется во многих отраслях промышленности, а также в бытовых условиях. Это наиболее распространенная конструкция, по сравнению с другими. Трехфазные двигатели вентильного типа, имеющие четное количество полюсов, стали хорошим вариантом для устройств, где требуется сочетание небольшой скорости и высокой мощности. Недостатками 3-фазных вентильных моторов является высокий уровень шума.
  • 4-фазные . У таких двигателей значительно уменьшен момент вращения и пульсаций. Используются они достаточно редко, так как они имеют высокую стоимость.

Вентильные двигатели применяются во многих областях производства, например, на буровых установках, в системах охлаждения на химических заводах, на нефтяных скважинах.

Разработка энергоэффективых электродвигателей и генераторов

Контакты: Прахт Владимир Алексеевич

7(343) 375-45-64

+7 909 028 49 25

Синхронные реактивные электродвигатели

Повышение энергоэффективности асинхронных двигателей до класса энергоэффективности IE3 (стандарт IEC 60034-30) и выше обеспечивается за счет применения литой медной обмотки вместо алюминиевой, что значительно усложняет технологию производства ротора и увеличивает стоимость двигателя. Подобные асинхронные двигатели выпускают ведущие зарубежные производители.

В последние годы на рынке появились энергоэффективные двигатели (класса IE3 и IE4) новых конструкций. Одной из машин такого типа является синхронный реактивный двигатель. Технология производства синхронных реактивных двигателей не требует применения дорогостоящих материалов (например, постоянных магнитов) или выполнения сложных технологических операций. Основное отличие синхронных реактивных двигателей от асинхронных – отсутствие литой обмотки. Ротор синхронного реактивного двигателя состоит из листов ламинированной стали. За счет этого синхронный реактивный двигатель превосходит асинхронный по технологичности изготовления и себестоимости.

В институте проводятся исследования и разработки высокоэффективных и экономичных синхронных двигателей и способов их применения.

Электрические машины из порошковых композиционных магнитомягких материалов

В настоящее время отработаны технологии производства порошковых композиционных магнитомягких материалов (ПКММ) на основе порошкообразного железа, не уступающих по характеристикам изотропной динамной стали. Эти ПКММ могут применяться в электромеханике.

При изготовлении электрических машин из ПКММ с использованием технологии пресс-формования обеспечивается безотходное производство и тем самым существенно снижается себестоимость продукции. Использование ПКММ позволяет изготавливать электрические машины новых конструкций, в которых отсутствуют лобовые части обмотки, лучше используется объем магнитопровода статора. Это позволяет снизить массогабаритные характеристики и повысить энергоэффективность машины.

В институте проводятся исследования и научное сопровождение разработок электрических машин новых конструкций из порошковых композиционных магнитомягких материалов.

Электродвигатели с обмоткой возбуждения на статоре

В институте проводятся исследования и разработки электродвигателей с повышенными энергосберегающими и улучшенными стоимостными характеристиками на базе конструкции с обмоткой возбуждения на статоре.

Однофазный электродвигатель с обмоткой возбуждения на статоре по сравнению с трехфазным асинхронным двигателем имеет более простой и надежный ротор, не требующий балансировки даже при разработке высокосортных приложений, существенно простой и дешевый блок управления электродвигателем, хорошие массогабаритные показатели.

Читать еще:  Автомобильный стартер как двигатель

Однофазный электродвигатель с обмоткой возбуждения на статоре по сравнению с вентильным реактивным электродвигателем имеет следующие преимущества: простой и дешевый инвертор (преобразователь частоты) для управления электродвигателем, меньшие пульсации момента, лучший гармонический состав, удовлетворяет требованиям по электромагнитной совместимости без применения корректора коэффициента мощности.

Двигатель с обмоткой возбуждения на статоре и инвертор может быть спроектирован для питания от однофазной и трехфазной сети. Возможно также исполнение двигателя с обмоткой возбуждения на статоре в трехфазном исполнении.

Бесщеточные электродвигатели для электроинструмента

В производстве электроинструмента используются ненадежные щеточные электродвигатели, дорогие вентильные двигатели с магнитами на роторе, тяжелые и большие по габаритам электродвигатели без магнитов в конструкции.

Отработана конструкция однофазных бесщеточных электродвигателей, которая позволяет использовать предельно простой и надежный зубчатый ротор, выполненный из стали.

Размещение постоянных магнитов на неподвижном статоре обеспечивает высокую удельную мощность, низкую массу электродвигателя и повышенный ресурс работы. Применение в электроинструменте однофазных бесщеточных электродвигателей данной конструкции обеспечивает повышенный ресурс работы, более низкую цену электродвигателя, его массу и габариты, простой, сбалансированный и надежный ротор, высокие энергетические характеристики.

Создано / Изменено: 9 июля 2015 / 9 июля 2015

Основные технические особенности вентильных двигателей

Для решения задач контролируемого движения в современных прецизионных системах все чаще применяются вентильные (бесколлекторные) двигатели. Такая тенденция обусловлена преимуществами вентильных двигателей и бурным развитием вычислительных возможностей микроэлектроники. Как известно, вентильные (синхронные) двигатели обеспечивают наиболее высокие плотность длительного момента (момент в единице объема) и энергетическую эффективность по сравнению с любым другим типом двигателя.

Современный вентильный привод объединяет электрическую, механическую и электронную подсистемы в единое цельное мехатронное устройство. В рамках такого подхода удается значительно сократить габариты, избавиться от лишних преобразователей и промежуточных элементов, а значит, повысить надежность всего привода в целом.

В рамках данной статьи рассматривается принцип работы и устройство современных вентильных машин, описываются принципы управления вентильным преобразователем для коммутации с применением датчиков положения ротора, а также перечисляются особенности интегрированного исполнения вентильных двигателей.

1. Основные технические особенности вентильных двигателей

Под вентильным двигателем понимают синхронный двигатель, содержащий многофазную обмотку статора, ротор с постоянными магнитами и встроенным датчиком положения. Коммутация такого двигателя осуществляется при помощи вентильного преобразователя. Поэтому его принято называть «вентильным».

По сути, вентильный двигатель с точки зрения метода коммутации представляет собой «инвертированный» вариант коллекторной машины постоянного тока. В вентильном двигателе индуктор находится на роторе, якорная обмотка на статоре. Коммутация осуществляется путем подачи управляющего согласованного воздействия на обмотки статора в зависимости от положения ротора, определяемого с помощью интегрированных в двигатель датчиков обратной связи.

Рис. 1. Структура вентильного двигателя:
1 – задняя крышка, 2 – печатная плата датчиков, 3 – датчики Холла,
4 – втулка подшипника, 5 – подшипник, 6 – вал,
7 – магниты ротора, 8 – изолирующее кольцо, 9 – обмотка,
10 – тарельчатая пружина, 11 – промежуточная втулка, 12 – изоляция,
13 – корпус, 14 – провода.

Рассмотрим структуру вентильного двигателя на примере семейства двигателей Faulhaber (рис. 1). В данном случае в основе ротора лежит двухполюсный магнит, статора трехфазная обмотка, положение ротора определяется с помощью интегрированных в двигатель датчиков Холла. В общем случае ротор может содержать другое количество пар полюсов, а статор иметь более традиционную конструкцию, внешне сходную со статором асинхронной машины. Наиболее распространен статор с тремя обмотками, соединенными «звездой» (реже в «треугольник») без вывода средней точки. Как известно, именно трехфазная структура является наиболее эффективной при минимуме числа обмоток.

При соединении обмоток «звездой» вентильный двигатель имеет большие постоянные момента и меньшие постоянные противо­ЭДС (при соотношении ?3) по сравнению с соединением «треугольником». Поэтому соединение «звездой» используется для управления осями, требующими больших моментов, а соединение «треугольником» – для больших скоростей.

В большинстве случаев обмотки статора выполняются без насыщения, т.е. противо­ЭДС обмоток имеет синусоидальную форму. Такие двигатели зачастую называют AC brushless motor в отличие от DC brushless motor, обмотки статора которого выполняются с насыщением. Такое насыщение в DC brushless motor предназначено для снижения пульсаций тока (и соответственно момента) при применении трапецеидальной коммутации.

Но иногда термин DC brushless motor используют для двигателей с питанием через инвертор от сети постоянного тока, что не совсем корректно.

Обычно количество пар полюсов, определяемое количеством пар магнитов ротора и определяющее соотношение механического и электрического оборотов, равно 4…8. Статор может быть выполнен с железным (iron core) или безжелезным (ironless) сердечником. Конструкция статора с безжелезным сердечником обеспечивает отсутствие силы притяжения магнитов ротора и железа статорной обмотки (magnetic attraction) и зубцового эффекта (cogging), но снижает незначительно (на 10…20%) эффективность двигателя изза меньших значений постоянной момента.

Одно из самых очевидных преимуществ ротора с постоянными магнитами состоит в уменьшении диаметра ротора и, как следствие, в уменьшении момента инерции ротора. Технологически магниты могут быть встроены в ротор или расположены на его поверхности. Но пониженный момент инерции зачастую приводит к малым значениям соотношения момента инерции двигателя и приведенного к его валу момента инерции нагрузки (mismatch ratio), усложняющему настройку привода. Поэтому ряд производителей предлагает наряду со стандартным и повышенный – в 2…4 раза – момент инерции ротора.

2. Датчики положения и дополнительные устройства

В качестве датчика положения, необходимого для коммутации вентильного двигателя, могут быть использованы датчики Холла (цифровые или аналоговые), энкодер (цифровой, аналоговый или абсолютный) или резольвер.

Цифровые датчики Холла используются для наиболее распространенной – трапецеидальной коммутации вентильного двигателя. Цифровые датчики Холла могут быть выполнены также и на оптической шкале энкодера.Аналоговые датчики Холла используются для синусоидальной коммутации вентильного двигателя.

Энкодер имеет три дифференциальных канала – два канала А, В прямоугольных импульсов, сдвинутых на 90 электрических градусов, и нулевой импульс I (индекс). Резольвер представляет собой вращающийся трансформатор с обмоткой возбуждения и двумя выходными обмотками со сдвигом 90 электрических градусов.

Аналоговый энкодер имеет аналоговые sin/cos (1В между пиками peaktopeak) дифференциальные выходы.

Внешний интерполятор позволяет повысить исходное разрешение с коэффициентом умножения до 4096 .Абсолютный энкодер передает информацию по положению по синхронному последовательному интерфейсу (SSI или BiSS), протокол которого задается производителем энкодера. Одними из наиболее популярных протоколов являются Heidenhain EnDat, Tamagawa Smart Abs и Stegman Hiperface протоколы.

Кроме датчика положения дополнительно могут быть встроены: тахогенератор, термодатчик, тормоз или редуктор.

Тахогенератор применяется в случае использования вентильного двигателя в режиме регулирования/стабилизации скорости с высокой точностью.

Термодатчик для защиты обмоток от перегрева представляет собой несколько последовательно соединенных позисторов, т.е. терморезисторов с положительным температурным коэффициентом (positive temperature coefficient РТС).

3. Способы коммутации с применением датчика положения ротора

Способы коммутации вентильного двигателя различаются по типу датчика положения ротора и особенностям регулирования тока в фазах обмоток статора.

3.1. Трапецеидальная или шестишаговая (sixstep) коммутация вентильного двигателя осуществляется по цифровым датчикам Холла. Для 3х датчиков Холла, являющихся «грубым» датчиком положения ротора, возможных состояний на полный электрический оборот будет шесть, каждое из которых соответствует 60 электрическим градусам. При каждом постоянном состоянии датчиков Холла подключаются только две обмотки двигателя, а третья отключена от источника напряжения. Постоянство вектора тока в пределах ±30 электрических градусов от оптимального (создающего максимальный момент) приводит к 17% пульсациям тока.

Читать еще:  Двигатель 402 инжектор датчик холостого хода

Преимущества:

  • готовность к работе при включении питания;
  • дешевый усилитель тока;
  • управление током (моментом) аналоговым сигналом ±10В.

Недостатки:

  • пульсации тока;
  • средние показатели быстродействия при позиционировании и равномерности при сканировании.

Область применения: регулирование скорости при невысоких требованиях к эффективности и равномерности перемещения на низких скоростях.

3.2. Синусоидальная коммутация лишена недостатков трапецеидальной коммутации за счет непрерывной и плавной коммутации вектора тока. Это достигается благодаря более высокому разрешению датчика положения ротора (обычно инкрементального энкодера) по сравнению с цифровыми датчиками Холла, имеющими разрешение только 60 электрических градусов. Для стандартного двигателя с соединением фаз в «звезду» достаточно контролировать ток в двух обмотках с помощью двух регуляторов на базе ПИрегуляторов. Такой способ коммутации очень эффективен на малых и средних скоростях, но имеет ошибки на высоких скоростях. В этом случае изза ограниченного усиления ПИрегулятора при заданном напряжении постоянного напряжения (DC bus) мах скорость ограничена. Несколько повысить скорость позволяет метод сдвиг фазы (phase advance).

Преимущества:

  • минимальные пульсации тока;
  • высокие показатели быстродействия при позиционировании и равномерности при сканировании.

Недостатки:

ограничение мах скорости при заданном напряжении постоянного напряжения;

управление током (моментом/силой) при помощи двух аналоговых сигналов ±10В.

Область применения: прецизионные механизмы.

3.3. Непосредственно векторный контроль тока в координатах DQ использует преобразования между статическими DQ и вращающими UVW координатами вектора тока, известными как преобразования ПаркаКларка. В отличие от синусоидальной такой способ коммутации предполагает работу ПИрегулятора с напряжениями постоянного тока, а не синусоидальными напряжениями. Это и обеспечивает качество управления током, независимое от скорости вращения двигателя.

Векторный контроль предполагает регулирование квадратичной (D) и прямой (Q) составляющих тока. Т.к. только прямая (Q) составляющая тока, перпендикулярная к полю ротора, создает момент двигателя, то задание тока подается на вход прямой (Q) составляющей тока. На вход квадратичной (D) составляющей тока подается «0» сигнал.

Преобразования между статическими DQ и вращающими UVW координатами вектора тока производятся с учетом токов фаз и положения ротора.

Векторный контроль при наличии преимуществ синусоидальной коммутации позволяет расширить диапазон скоростей вентильного двигателя за счет более полного использования напряжения постоянного тока.

Следует отметить, что для синусоидальной или векторной коммутации тока при использовании инкрементального (относительного) датчика положения ротора необходимо первоначально (т.е. при каждом включении питания) сфазировать положение ротора относительно фаз статора. Алгоритм такой начальной фазировки обычно является «встроенным».

Трапецеидальная коммутация вентильного двигателя не требует начальной фазировки благодаря использованию датчиков Холла, являющихся абсолютными датчиками положения ротора. Поэтому их иногда применяют вместе с инкрементальным датчиком положения для реализации синусоидальной или векторной коммутации тока без необходимости производить начальную фазировку. Такая конфигурация рекомендуется для механизмов, где реализация процедуры начальной фазировки затруднена, например, механизмов вертикального перемещения.

4. Интегрированное исполнение вентильных двигателей

Одной из основных перспективных тенденций в развитии современных вентильных двигателей является тяготение производителя к интеграции в единый корпус с двигателем управляющей электроники. Такое решение позволяет предлагать не разрозненный набор комплектующих приводной системы, а законченный привод в сборе. Таким образом решаются возможные проблемы совместимости различных компонент привода, а также проблема различных интерфейсов компонент приводной системы.

Рис. 2 Векторный контроль тока вентильного двигателя

Примером интегрированного привода является серия двигателей BG, предлагаемая компанией Dunkermotoren (рис. 3).

В рамках данной серии двигателей производитель предоставляет возможность заказать одну и ту же модель в различных исполнениях:

  • без интегрированной управляющей электроники,
  • с интегрированной коммутирующей электроникой (2wire),
  • с интегрированным контроллером скорости,
  • с интегрированным контроллером движения,
  • с интегрированным контроллером движения с сетевыми интерфейсами (CAN, PROFINET).

5. Преимущества использования вентильных двигателей

При разработке нового изделия разработчик часто сталкивается с проблемой выбора двигателя для решения конкретной задачи движения. Когда речь идет о построении привода средней либо малой мощности, как правило, выбор сводится к сборкам на базе коллекторных, вентильных, а также шаговых двигателей.

Рис. 3 Двигатели Dunkermotoren серии BG

К несомненным достоинствам вентильных двигателей следует отнести:

Высокий запасаемый момент:

  • Идеальное решение при высоких пиковых нагрузках
  • Хорошее ускорение при изменяющихся нагрузках

Высокий диапазон скоростей

Высокую равномерность движения

Высокую точность позиционирования благодаря возможности использования энкодеров и других датчиков обратной связи по скорости/положению.

Двигатели для специальных применений: в среде высокого вакуума, автоклавируемые, погружные с высоким классом IP защиты.

М. Сонных, Л. Ганнель
Статья опубликована в журнале «РИТМ» №10, 2010

Вентильный двигатель в чем отличие

Ввиду возросших мощностей судовых электроэнергетических систем, а также потребности судов в высокой маневренности, что обуславливается применением энергоемких гребных энергетических установок, рассматриваются основные движительные установки с приводом от двигателей с постоянными магнитами, а также разработки вентильных индукторных двигателей отечественных и зарубежных производителей. Принцип работы двигателей семейства Azipod практически одинаков, однако отличия заключаются в областях применения данного движителя и суммарной выходной мощностью. Проведено сравнение основных конкурирующих между собой производителей винторулевых колонок, таких как Azipod, на который был сделан основной упор, а также колонки производителей Schottel-Werft Josef Becker GmbH Co. KG, Siemens AG Marine Engineering и комплекс Mermaid от Rolls-Royce. Показаны примеры применения винторулевых колонок семейства Azipod VI — новейшего гребного модуля, предназначенного для работы в тяжелых условиях Северного морского пути, на судах российской судовой компании «Совкомфлот». Рассмотрены отечественные разработки синхронных гребных электродвигателей — вентильных двигателей, показано основное их отличие от других типов гребных двигателей. В настоящее время вентильные двигатели выпускаются отечественными предприятиями для угольной и буровой промышленности, однако один из таких типов двигателей установлен на буксир, что является первым успешным проектом такого рода. Следовательно, для систем электродвижения прослеживается тенденция создания винторулевых колонок на базе синхронных двигателей с постоянными магнитами, а при достаточном финансировании российских предприятий есть все предпосылки для разработки отечественных как внутрикорабельных комплексов электродвижения, так и винторулевых колонок на основе вентильно-индукторных двигателей.

Ключевые слова

Аzipod, винторулевая колонка, приводной двигатель, гребная электрическая установка, вентильный двигатель, постоянные магниты

Читать полный текст статьи: PDF

Список литературы

Егоров Л. Е. Компьютерное моделирование единой высоковольтной судовой электроэнергетической системы с пропульсивными комплексами типа Azipod в нормальных и аварийных режимах работы: дис.. канд. техн. наук: 05.09.03 / Л. Е. Егоров. — СПб.: ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова», 2014. — 183 с.
ABB [Электронный ресурс]. — Режим доступа: http://new.abb.com/ (дата обращения: 01.04.2018).
Кузнецов В. И. Бестрансформаторные единые электроэнергетические системы: дис.. канд. техн. наук: 05.09.03 / В. И. Кузнецов. — СПб.: СПБГМТУ, 2015. — 159 с.
Библиотека фирмы ABB [Электронный ресурс]. — Режим доступа: https://library.e.abb.com (дата обращения: 05.04.2018).
Никифоров Б. В. Корабельный электропривод / Б. В. Никифоров. — Новочеркасск: Лик, 2014. — 270 c.
Дядик А. Н. Корабельные энергетические системы / А. Н. Дядик, Б. В. Никифоров. — Новочеркасск: Колорит, 2012. — 680 c.
Дарьенков А. Б. Гребные электрические установки / А. Б. Дарьенков, Г. М. Мирясов, В. Г. Титов [и др.]. — Н. Новгород: Изд-во НГТУ им. Р. Е. Алексеева, 2014. — 219 с.
Высоцкий В. Е. Электромеханические процессы в вентильном двигателе с постоянными магнитами / В. Е. Высоцкий, А. П. Синицын, С. А. Тарашев // Вестник Самарского государственного технического университета. Серия: Технические науки. — 2010. — № 2 (27). — С. 139-144.
Птах Г. К. Вентильно-индукторный реактивный электропривод средней и большой мощности: зарубежный и отечественный опыт / Г. К. Птах // Электротехника: сетевой электронный научный журнал. — 2015. — Т. 2. — № 3. — С. 23-33.
Лагода Ф. И. Вентильные двигатели / Ф. И. Лагода // Актуальные вопросы энергетики: материалы Всероссийской науч. конф. студентов, магистрантов, аспирантов. — Омск: Омский государственный технический университет, 2016. — С. 76-80.
Быков А. C. Гребные электрические установки атомных ледоколов / А. C. Быков, В. А. Малышев, В. В. Романовский. — СПб.: Элмор, 2004. — 320 c.
Никифоров Б. В. Перспективы применения вентильных индукторных приводов в составе СЭД ДЭПЛ / Б. В. Никифоров, А. А. Цветков // Интеллектуальные электромеханические системы и комплексы специального назначения. — Новочеркасск: Лик, ЮРГТУ. — С. 11-16.
Emadi A. Energy-Efficient Electric Motors / A. Emadi. — New York: Marcel Dekker, Inc., 2004. — 406 p.
Дядик А. Н. Корабельные энергетические системы / А. Н. Дядик, Б. В. Никифоров. — Новочеркасск: Колорит, 2012. — 680 с.
Никифоров Б. В. Аккумуляторные батареи подводных аппаратов / Б. В. Никифоров, А. И. Русин. — Новочеркасск: Колорит, 2011. — 162 с.
Силовая электроника корабельных электротехнических комплексов: учеб. пособие / под ред. Б. В. Никифорова. — Новочеркасск: Колорит, 2006. — 411 с.
Никифоров Б. В. Вентильно-индукторные двигатели для тяговых электроприводов / Б. В. Никифоров, С. А. Пахомин, Г. К. Птах // Электричество. — 2007. — № 2. — С. 34-38.
Никифоров Б. В. Исследование вентильного индукторного двигателя в составе насосного агрегата / Б. В. Никифоров, А. А. Цветков // Электротехника. — 2007. — № 6. — С. 24а-33.
Никифоров Б. В. Развитие систем электропривода подводных лодок (в порядке обсуждения) / Б. В. Никифоров // Судостроение. — 1999. — № 5. — С. 23-25.
Рroverbs J. Aspects of electro-magnetic aircraft launch and linear machine development / J. Proverbs, Colyer, T. Cox, J. F. Eastham // IEEE transaction on Magnetics. — 2010. — Vol. 46. — Is. 12. — Pp. 57-59.
Petersen L. J. Next-Generation Power and Energy: Maybe Not So Next Generation / L. J. Petersen, D. J. Hoffman, J. P. Borraccini, S. B. Swindler // Naval Engineers Journal. — 2010. — Vol. 122. — Is. 4. — Pp. 59-74. DOI: 10.1111/j.1559-3584.2010.00280.x.
Ehrhart Р. Тhе аll-electric ship: ready to take over? / Р. Ehrhart // Naval Forces. — 2011. — Vol. XXXII. — Pp. 41-45.
Letellier Р. H. Power Permanent Magnet Machines for Electric Propulsion Drives / Р. H. Letellier // Материалы 3 международного симпозиума: All electric ship civil or military (AES 2000). — Париж, 2000. — C. 26-27.
Jamai Н. Optimal Switched Reluctance Моtor Drive for Hydraulic Рumр unit / Н. Jamai, М. Kaneda, K. Ohyama, Y. Takeda, N. Matsai. — IEEE INTECH, 2000. — Pp. 98-101.
Buckingham J. Submarine Рower and Propulsion — Application оf Technology to Deliver Customer Benefit / J. Buckingham, C. Hodge, T. Hardy. — Bath, UK: ВМT Defence Services Ltd., 2008. — 17 p.
Зайцев А. А. Транспорт на магнитном подвесе / А. А. Зайцев, Г. Н. Талашкин, Я. В. Соколова. — СПб.: Изд-во ПГУПС, 2010. — 60 с.
Никифоров Б. В. Применение системы электродвижения на ПЛ / Б. В. Никифоров // Электричество. — 2001. — № 8. — C. 121-123.
Никифоров Б. В. Корабельные системы электродвижения: дис. … д-ра техн. наук / Б. В. Никифоров. — СПб.: ЦКБ Морской техники «РУБИН», 2006. — 311 с.
Григорьев А. В. Единая электроэнергетическая установка гидрографического судна на базе системы электродвижения переменного тока / А. В. Григорьев, К. С. Ляпидов, Л. С. Макаров // Судостроение. — 2006. — № 4. — С. 33-34.
Пат. 2324272 Российская Федерация, МПК H 02 J 9/06. Интеллектуальный преобразователь напряжения постоянного тока для динамически изменяющейся нагрузки / В. Е. Апиков, К. С. Ляпидов, О. Е. Лозицкий, Б. В. Никифоров; заяв. и патентообл. Центральное конструкторское бюро морской техники «РУБИН», ЗАО «ИРИС», ФГУП «Производственно-конструкторское предприятие “ИРИС”». — № 2006120505/09; заявл. 13.06.2006; опубл. 10.05.2008, Бюл. № 13.
Mitcham A. J. Motors and drives for surface ship propulsion: comparison of technologies / A. J. Mitcham, J. J. A. Cullen // Proc. 1995 Electric Propulsion Conf. — 1995. — Vol. 4. — Pp. 88-89.
Letellier Р. Electrical propulsion motors / Р. Letellier // Electric Propulsion. Тhе Effective Solution. — London: IMarE, 1995. — P. 7.
Никифоров Б. В. Создание корабельных систем электродвижения с вентильно-индукторным электроприводом / Б. В. Никифоров, А. П. Темирёв, О. Е. Лозицкий // Известия высших учебных заведений. Электромеханика. — 2007. — № 4. — С. 62-66.
Ericsen Т. Power electronics and future ships electrical system / Т. Ericsen, N. Hingorani, Yu. Khersonsky // IЕЕЕ Transactions оf industry applications. — 2006. — Vol. 42. — Is. 1. — Рр. 76-79.
Ehrhart Р. MM technologies and application at ships generators and motors / Р. Ehrhart, L. Sozzi // Developing Benefits for Maritime Applications. -1998. — P. 2.
Авт. св. № 332499. Асинхронный генератор в ЭЭС / Б. В. Никифоров, В. Н. Давыдов; опубл. 08.01.91.
Пат. 2237338 Российская Федерация, МПК H 02 K 19/06, H 02 K 1/06. Индукторный двигатель / Б. В. Никифоров, В. Н. Давыдов, [и др.]; заяв. и патентообл. ДГУП «Конструкторское бюро приборостроения ФГУП» ПКП «ИРИС». — № 2002119797/09; заявл. 22.07.2002; опубл. 27.09.2004, Бюл. № 27.
Пат. 2343615 Российская Федерация, МПК H02J 9/06. Реверсивный преобразователь напряжения для передачи электроэнергии между сетями переменного и постоянного тока / А. В. Архипов, К. С. Ляпидов, Б. В. Никифоров, [и др.]; заяв. и патентообл. закрытое акционерное общество «ИРИС». — № 2007143397/09; заявл. 22.11.2007; опубл. 10.01.2009, Бюл. № 1.
Klockow B. Electric roads / B. Klockow, H. Biesenack, M. Herzog // Elektrische Bahnen. — 2003. — № 3. — Pp. 107-112.
Cooke R. Integrating eхternal drive actuation systems into the submarine. UDT / R. Cooke. — 2010. — 157 p.
Дядик А. Н. Использование электрохимических генераторов на кораблях / А. Н. Дядик, Б. В. Никифоров. — СПб.: Изд. СПб ГМТУ, 2011. — 340 с.

Читать еще:  Nissan cube двигатель технические характеристики

Об авторах

Романовский Виктор Викторович — доктор технических наук, профессор

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова»

Никифоров Борис Владимирович — доктор технических наук, профессор

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова»

Макаров Арсений Михайлович — аспирант

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector