В чем заключается мощность двигателей - Авто журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем заключается мощность двигателей

Экологичные и малошумные: разработки ЦИАМ в области гибридных и электрических технологий для авиации

Электрификация – один из перспективных векторов развития мирового и отечественного авиастроения. Разработкой гибридных и полностью электрических силовых установок занимаются все крупные мировые авиационные производители и научные центры. Технологии создания гибридных (ГСУ) и электрических (ЭСУ) силовых установок для перспективных летательных аппаратов (ЛА) становятся важным фактором в конкурентной борьбе авиастроителей в свете ужесточения экологических требований ИКАО. Это также соответствуют тезису, что будущее – за неуглеводородными топливами.

Разработки в этой области находятся в фокусе внимания всех авиационных держав: новые технологии планируется использовать как в военной сфере – боевые и разведывательные беспилотники, легкие учебно-тренировочные самолеты, так и в гражданской – развитие маршрутной сети, появление новых типов летательных аппаратов. Создание двигателей новых схем может дать толчок развитию ЛА с новой архитектурой: мультироторного типа, конвертопланам с вертикальным или ультракоротким взлетом и посадкой и др. В конечных результатах исследований в данной области заинтересован и бизнес в лице авиакомпаний, нацеленных на снижение издержек.

Преимущества гибридизации

В настоящее время повышение топливной эффективности традиционных газотурбинных двигателей дается все труднее и труднее. И здесь гибридизация может помочь. Традиционные газотурбинные двигатели должны работать на всех режимах и, в первую очередь, обеспечивать взлет и набор высоты. Так получается, что для крейсерского режима мощность такого двигателя избыточна. Для снижения мощности двигателя снижается расход подаваемого в камеру сгорания топлива (дросселируется), что приводит к повышению удельного расхода топлива. Гибридная силовая установка позволяет решить эту проблему путем комбинирования различных типов источников энергии, оптимизированных под каждый режим полета.

Есть множество схем гибридных силовых установок. Например, в последовательной силовой установке воздушный винт (вентовентилятор) приводится во вращение электромотором. Электроэнергию электродвигатель получает от генератора, вращаемого газотурбинным двигателем, и от аккумуляторов. На взлете и наборе высоты одновременно будут работать газотурбинный двигатель и аккумуляторы. Газотурбинный двигатель оптимизирован под крейсерский режим полета и будет обеспечивать энергией электродвигатель и заряд аккумуляторов. Такое решение позволит за счет мощности второго источника обеспечить ГТД энергией и расходовать меньше топлива, обеспечивая достаточную тягу при наборе высоты и экономию топлива – и ресурса традиционного двигателя – в крейсерском полете.

Также подобная схема является более выгодной с точки зрения экономики. Она позволяет вместо двух газотурбинных двигателей, дорогих в производстве и в обслуживании, использовать один, что положительно сказывается на стоимости силовой установки и затратах на ТОИР. Другим преимуществом является повышение безопасности полетов. Так, в случае отказа газотурбинного двигателя в полете, самолет способен совершить экстренную посадку на аккумуляторных батареях.

Если говорить об экономических преимуществах создания и применения новых силовых установок, то, например, на самолетах местных авиалиний с ГСУ расход топлива может быть сокращен на 20% уже в самое ближайшее время, что также приведет к сокращению выбросов вредных веществ в атмосферу. Конструктивные преимущества применения высокоэффективных СУ могут обеспечить экономический эффект в виде снижения стоимости конечного изделия, так как удельные характеристики электродвигателей практически не зависят от их мощности.

Россия – в тренде

Разработки в области ГСУ и ЭСУ с целью обеспечить технологический прорыв и заложить фундамент для новых стандартов ведут практически все ведущие разработчики авиационной техники в США, Франции, Великобритании, Германии и других странах: Airbus, Boeing, NASA, DARPA и др. Использование водорода в качестве топлива активно развивают Германия и Япония, имеющие самые продвинутые технологии в области водородных топливных элементов. Количество различных проектов аэротакси в мире уже перевалило за 150.

Первым проектом данной тематики стали инициативные работы ЦИАМ над беспилотником с ЭСУ на водородных топливных элементах. Всего было испытано четыре ЛА такого типа: первые два – на зарубежных элементах питания, следующие два поднялись в небо на батареях, разработанных в сотрудничестве с Институтом проблем химической физики (ИПХФ) РАН. Примечательно, что данная работа стала катализатором для создания отечественного топливного элемента, который позже вышел в серийное производство.

В 2017 году, уже под патронажем Минпромторга России, проявившего интерес к перспективам применения ГСУ и ЭСУ, была запущена работа по формированию опережающего научно-технического задела в этой области и созданию демонстраторов технологий. Учитывая многолетний опыт, наличие высококвалифицированных научных кадров и собственной экспериментальной базы, ЦИАМ был выбран в качестве головного исполнителя ряда государственных контрактов.

В рамках этого проекта выполнен ряд научно-исследовательских работ.
Итогом одной из них стала полностью электрическая СУ для экспериментального двухместного самолета «Сигма-4». Этот самолет предназначен для обучения пилотированию, тренировочных и туристических полетов, аэрофотосъемки и других воздушных работ. Питание электрического двигателя с максимальной мощностью 80 кВт (109 л.с.) осуществляется от блока аккумуляторных батарей, состоящих из литий-ионных аккумуляторных ячеек. Летные испытания самолета с ЭСУ запланированы на 2021-2022 гг. и будут проводиться в два этапа: первый – только с использованием заряда аккумуляторов, второй – с добавлением топливного элемента, что при той же массе, что и у аккумуляторов, позволит увеличить время полета в 3-4 раза.

Также был разработан демонстратор вспомогательной электрической установки мощностью 30-40 кВт на базе топливного элемента. Это именно вспомогательная ЭСУ, которая выступает в качестве энергоузла для летательного аппарата. То есть в ее задачи, в первую очередь, входит обеспечение самолета электроэнергией на земле. Например, во время рулежки или технического обслуживания. Однако она может быть использована как основной или резервный источник электроэнергии на определенных режимах полета.

Освоив 60-80-киловаттную мощность электродвигателя, специалисты Института накопили достаточно опыта, чтобы повысить этот показатель.

Демонстратор ГСУ, выполненный ЦИАМ в рамках НИР «Электролет» и ее продолжения «Электролет СУ-2020», состоит из электрического двигателя мощностью 500 кВт (680 л.с.), энергоузла для его питания, в который входят серийный турбовальный двигатель с подключенным к свободной турбине электрогенератором, а также блок аккумуляторных батарей. Уникальность российского технического решения для электродвигателя, разработанного ЗАО «СуперОкс» по заказу Фонда перспективных исследований (ФПИ), заключается в использовании высокотемпературных сверхпроводниковых технологий и криогенного охлаждения. Данное нововведение позволило решить одну из сложнейших проблем современного двигателестроения – существенно снизить электрическое сопротивление и свести тепловыделение практически к нулю. В результате были достигнуты более высокие показатели весовой эффективности двигателя и КПД электрических машин 98%.

В 2020 году демонстратор прошел финальную доработку и стендовые испытания, результаты которых позволили перейти к летным испытаниям. Наземные пробежки летающей лаборатории Як-40ЛЛ с ГСУ, дополняющей два штатных турбореактивных двигателя, состоялись в феврале 2021 года в СибНИА (также входит в НИЦ «Институт имени Н.Е. Жуковского»). Первые летные испытания летающей лаборатории запланированы на вторую половину 2021 года.

В этой научно-исследовательской работе, помимо коллег из СибНИА и «СуперОкс», принимает участие целая команда специалистов из МАИ, УГАТУ, ИЭЭ РАН и др. Головным исполнителем работ является ЦИАМ.

Российские «электросамолеты» на МАКС 2021

Актуальность темы силовых установок новых типов в авиационном двигателестроении подтверждается и пристальным вниманием, которое уделяется этой составляющей при организации Международного авиационно-космического салона МАКС 2021.

Первые отечественные «электросамолеты» будут впервые представлены вниманию широкой аудитории в рамках единой экспозиции организаций, входящих в НИЦ «Институт имени Н.Е. Жуковского».

Тема «электричества» в экспозиции ЦИАМ поддерживается еще несколькими интересными и перспективными разработками. Например, ГСУ на базе двухсекционного турбированного роторно-поршневого авиационного двигателя с электрогенератором – ЭУ-РПД350Т. Он предназначен для применения в составе ГСУ летательных аппаратов вертикального взлета и посадки.

Также на МАКС будет представлен концепт комплексного проекта «Силуэт», являющегося развитием темы применения технологий ВТСП и криогенных топлив в авиации. Его реализацию ЦИАМ планирует начать в 2022 году. В рамках сотрудничества с Фондом перспективных исследований и использования опыта разработки ГСУ мощностью 500 кВт планируется создать демонстратор технологий полностью сверхпроводящей ГСУ мощностью 2 МВт. Макет этой установки можно будет увидеть на экспозиции.

Читать еще:  Что происходит когда двигатель клинит

Отраслевые перспективы

Приоритетными задачами ЦИАМ, как головного научного института авиационного двигателестроения, являются получение новых знаний в рамках формирования опережающего научно-технического задела и экспериментальная проверка жизнеспособность новых технических решений и перспективных технологий. Вся эта работа затем находит свое применение в промышленности, чтобы в значительной степени снизить риски и затраты на стадии опытно-конструкторских работ.

Недавно ЦИАМ в партнерстве с АО «ОДК-Климов» (входит в Объединенную двигателестроительную корпорацию Ростеха) приступил к разработке демонстратора ГСУ последовательной схемы на базе двигателя ВК-650В. Такая СУ может найти себе самое широкое применение в составе легких многоцелевых вертолетов, перспективных беспилотных и пилотируемых ЛА взлетной массой 2-8 т, самолетов МВЛ, аэротакси, воздушных судов бизнес-авиации и ЛА вертикального взлета и посадки.

Серьезный интерес к новым силовым установкам в мировом сообществе подтверждает, что эра электричества в авиации – не перспектива 20 лет, а наступит уже в ближайшем будущем. Первые силовые установки уже готовы поднять в небо не просто легковесные беспилотники, а легкомоторные самолеты, а в дальнейшем, с развитием технологий, – обеспечить поддержку традиционным двигателям воздушных судов малой и региональной авиации. При этом прорывные исследования, в которых Россия находится в тренде мировых тенденций, являются важной отправной точкой обеспечения удовлетворения экологических требований ИКАО и нового витка развития авиастроения.

Автор: Михаил Гордин, генеральный директор ЦИАМ, кандидат технических наук

Увеличение мощности

1 улучшение характеристик двигателя
2 уменьшение массы автомобиля
3 Улучшение трения колес улучшение сцепных свойств автомобиля с дорожным покрытием
4 Сопротивление воздуха и скорость Улучшение аэродинамических свойств автомобиля
5 Потери мощности в трансмиссии Уменьшение неизбежной потери мощности при прохождении через трансмиссию
6 Улучшение стартовых свойств за счет применения электроники
7 Уменьшение инертности системы

Основной раздел

Увеличение мощностных характеристик двигателя

Есть несколько основных принципов по увеличению мощности двигателя, некоторые очень трудоемки и дорогостоящи но некоторые довольно доступны и их можно воспроизвести у себя в гараже. С этой страницы, которая будет развиваться и дополняться, будет доступна вся информация по тюнингу двигателя, как основных положений и теории так и практических советов по увеличению мощности и сколько примерно дает прибавку каждый вид тюнинга.

Несколько вводных слов об основах увеличения мощности двигателей внутреннего сгорания. Основные принципы позволяющие добавить мощности и крутящего момента. Некоторые позволяют сохранить расход топлива или даже его уменьшить, при том что мощности будет больше. Фантастика скажете вы! Нет все обосновано.

1. Увеличение мощности и крутящего момента за счет увеличения количества сожженного топлива.

Топливо в двигатель добавить не сложно, основная проблема заключается в том чтобы снабдить это топливо окислителем. В роли окислителя выступает кислород находящийся в воздухе. Для оптимального горения, топливо-воздушная смесь должна состоять из 1 части топлива (по весу) и 14 частей воздуха (тоже по весу) такая смесь называется стехиометрической и позволяет получить наиболее выгодные с точки зрения максимальной мощности показатели. Поэтому при форсировке двигателя ориентируются на увеличение количества поступаемого окислителя (воздуха) в цилиндры за такт сгорания.
Самые эфективные методы увеличения топливо воздушной смеси.

1. Увеличение рабочего объема двигателя.

Увеличивает мощность и крутящий момент во всем диапазоне частот, если бы не существовало потерь на впуске то мощность увеличивалась бы линейно. Есть даже поговорка «ничто не заменит кубические сантиметры. Приводит к увеличению расхода топлива, так как при тех же оборотах прокачивается больше топливовоздушной смеси. Если увеличить объем и удлинить передачи трансмиссии то увеличение расхода не будет большим.

Степень сжатия это отношение полного объема цилиндра к объему камеры сгорания. Увеличение степени сжатия приводит к увеличению мощности и крутящего момента во всем диапазоне оборотов, при этом при той же выделяемой мощности двигателем потребление топлива будет меньшим. Пример: после увеличения степени сжатия автомобиль при движении со скоростью 100 км в час будет меньше расходовать бензина чем автомобиль с большей степенью сжатия на той же скорости. Но есть одно но. С увеличением степени сжатия двигатель становится более требовательным к октановому числу топлива. хотя есть некоторые непростые ухищрения позволяющие этого избежать. Но совсем не бюджетно!

3. Увеличение оборотистости двигателя.

Если тот же крутящий момент получить на более высоких оборотах то максимальная мощность двигателя увеличится. Связано это с тем что мощность, есть произведение крутящего момента на обороты при котором этот момент образуется. Данный вид тюнинга может значительно повысить мощность вашего двигателя. Если планируется сильно повышать обороты то придется заменить все детали участвующие в работе, а они могут оказаться весьма дорогостоящими. Расход может стать очень большим, так как после доработки двигатель не может так же эффективно работать на малых оборотах, как раньше и придется пользоваться большими. На постоянной основе!

Улучшение наполнения двигателя.

3.1 Тюнинг головки(вок) двигателя — самая действенная из всех манипуляций по доработке атмосферного двигателя внутреннего сгорания, за счет доработки головки блока и установки нового распредвала, можно существенно повысить эффективную мощность двигателя в основном за счет смещения максимального крутящего момента в сторону высоких оборотов. При этом полка момента становиться уже в зависимости от прибавки мощности. Чем больше в процентном соотношении прибавка мощности, тем более выраженным становиться пик момента. Связано это с тем, что двигатель настраивается на определенный диапазон работы частот вращения коленчатого вала и на других оборотах работает неэффективно. Системы впуска и выпуска для большей эффективности тоже должны быть настроены и соответствовать рабочим оборотам форсированного двигателя.

Тюнинг головки блока можно разделить на несколько составных частей.

3.1.1 Тюнинг впускных и выпускных каналов.
3.1.2 Тюнинг впускных клапанов.
3.1.2 Тюнинг выпускных клапанов.
3.1.3 Тюнинг камеры сгорания
.
3.1.4 Тюнинг клапанных пружин.
3.1.5 Тюнинг направляющих втулок клапанов.
3.1.6 Подбор и установка распредвала.
3.1.7 Замена головки или головок двигателя на более производительные.

4. Тюнинг впуска и выпуска

Самый распространенный вид тюнинга двигателя. Позволяет минимизировать потери давления на впуске и облегчить выпуск отработавших газов. При применении на стандартном двигателе, все манипуляции с тюнингом впуска и выпуска малоэффективны и иногда прибавка даже не чувствуется. На подготовленном двигателе, данный вид тюнинга будет очень полезен и даже необходим.

5. Установка наддува.

Установка различных видов наддува позволяет искусственно увеличить рабочий объем двигателя. Во впускной коллектор воздух не засасывается, а подается под давлением благодаря установки турбонаддува или приводных нагнетателей. Чем больше давление на впуске тем больше мощности выдаст двигатель. Грубо говоря 1 атмосфера или 14 пси увеличивает мощность вдвое.

Является дополнительным окислителем топлива. Попадая в камеру сгорания N2O под действием теплоты распадается на атомарный кислород повышая процентное соотношение кислорода и на азот который подавляет детонацию в двигателе. Впрыск закиси осуществляется на короткое время и не используется на постоянной основе. Можно прибавить значительное количество лошадиных сил 25-150 и более в зависимости от системы и двигателя. Существует несколько систем впрыска закиси азота.

Сухая
Мокрая
Система прямого впрыска закиси азота

Уменьшение тепловых потерь двигателя

Данный вид усовершенствования двигателей широко применяется в автоспорте, но не очень развит среди дорожных автомобилей. Основной принцип: добиться перехода, как можно большего количества тепловой энергии в полезную работу двигателя и минимизировать тепловые потери в систему охлаждения и в выхлопную трубу. У современных бензиновых двигателей общий КПД около 30% у дизелей 45%. При уменьшении тепловых потерь мощность двигателя увеличивается а расход топлива снижается. Все что увеличивает КПД приводит к снижению расхода топлива, так как энергия которая могла быть утрачена, используется и совершает полезную работу.

Читать еще:  Чем заливают обмотку двигателей

Уменьшение механических потерь двигателя

Стандартный двигатель можно значительно усовершенствовать, сделать его экономичнее и при этом мощнее одновременно. Все это возможно если уменьшить механические потери на трение и инерционные потери. прибавка мощности и крутящего момента может быть не большой но весьма полезной так как она будет заметна во всем диапазоне оборотов и максимизирует все остальные доработки двигателя. При этом потребление топлива не увеличится, так как эти прибавки получаются за счет увеличения механического КПД двигателя. Доработки требуют работы в основном над уже имеющимися деталями двигателя и довольно трудоемки, хотя прибавки мощности дают не большие

Простейшие способы добавить лошадей в двигатель

Раздел постоянно обновляется путем добавления информации.

Варианты увеличения мощности двигателя

Тюнинг автомобиля заключается не только во внешних изменениях, как считает большинство людей, но и во внутренних, в которые входит доработка двигателя под капотом. То есть свой автомобиль можно усовершенствовать не только внешне, но и внутренне. Каждый хозяин автомобиля желает, чтобы его транспорт обладал высокой мощностью и скоростью. Приумножить количество мощности у двигателя можно самостоятельно, не затрачивая на это много денег и не обращаясь к специалистам.

Возможные последствия повышения мощности двигателя

Прежде чем начать увеличивать мощность следует обратить внимание на некоторые сложности. Первая сложность заключается в том, что при увеличении мощности двигателя придется тратить больше денежных средств на бензин, так как он будет расходоваться в несколько раз быстрее. А вторая сложность заключается в возможном изнашивании двигателя, причем замена масла будет производиться чаще. Но если вы сомневаетесь в своих способностях, то лучшим способом будет обращение в службу СТО, ведь там знают свою работу. Но если у вас все же появилось желание сделать эту работу в домашних условиях, то нужно быть готовым к покупке качественного бензина и увеличения объема цилиндров.

Тюнингованный двигатель

Способы тюнинга двигателя

Каждый автомобилист изобретает разные способы для повышения мощности у двигателя: начинается все с устанавливания дополнительного оборудования, а заканчивается полной переделкой самого двигателя. Самый известный способ это увеличение мощности за счет выпускной системы и воздушного фильтра.

Способ 1

Для изменения выпускной системы нужен прямоточный глушитель, который будет крупнее вашего стандартного. Это поможет вам увеличить работоспособность вашего двигателя и увеличить допустимую нагрузку и уменьшить выхлоп отработанного газа. Иными словами, с увеличением времени выхода использованных газов, мы сможем добавить несколько лошадей.

Эти изменения потребуют, чтобы вы изменили еще некоторые части вашего двигателя. Так, потребуется заменить воздушный фильтр, чтобы воздух стал свободней поступать. Лучше всего приобрести выхлоп с глушителем диаметром 3 дюйма. Дополнительно можно установить второй воздушный фильтр – спортивный.

Следующее изменение, которое вам потребуется – это дополнительное оборудование для охлаждения впускаемого воздуха, так как горячий воздух, который врывается резким горячим потоком, снизит эффективность работы двигателя.

Проверьте вашу проводку и свечи зажигания, чтобы она была хорошей и устойчивой к таким перепадам мощности. Не нужно экономить на свечах зажигания, хорошие свечи будут лучше зажигать топливо.

Способ 2

Но есть и другие способы как увеличить рабочий объем двигателя. Можно попробовать расточить кольца у цилиндра двигателя. Либо заменить коленвал. Однако это дорогостоящие и продолжительные по времени изменения.

В первом случае вам потребует расточить цилиндр, и купить новые кольца и поршни. Во втором случае коленвал, который будет иметь больший ход, вам придется искать долго и нудно. Если вы все таки найдете нужный вам коленвал, то его замена будет не из простых.

Самостоятельная расточка колец

Способ 3

Прибавить мощность вашему двигателю может и хороший бензин. Когда в цилиндр поступает большее количество горючего, ваш двигатель увеличиться в производительности. Чтобы повысить шкалу наполнения цилиндров горючим, можно попробовать уменьшить аэродинамическое сопротивление впускной и выпускной систем.

Способ 4

Очень популярный способ увеличения скорости это увеличить сжатие горючего. Для этого умельцы стачивают поверхность головок или меняют прокладку, на более тонкую. Однако стоит помнить, что головка может притереться. Поэтому с этим делом лучше не рисковать.

Но прежде чем вносить какие-либо изменения под капот, проверь двигатель на наличие ошибок. Возможно, что-то у вас работает неисправно, что приводит к уменьшению мощности и создают глухие звуки и рокот. Очень часто бывают поломки самих цилиндров. Изнашиваются кольца, либо забилась система охлаждения.

Заключение

Главной проблемой такого тюнинга является его высокая цена. Если же вы всё-таки решились вносить какие-либо изменения, то обязательно подбирайте нововведения, которые подойдут вашему автомобилю. Часто, дорогой – не значит лучший. Выбирайте агрегаты средней стоимости. Если же хотите внести капитальные изменения, то тут вам придется менять больше деталей, что займет у вас много времени и больших денежных затрат.

Мы постарались описать вам самые распространенные изменения в двигателе автомобиля. Однако существует еще множество способов. Многие автомеханики изобретают какие-то свои способы, пытаются изловчиться и придумать что-то новое. Некоторые способы вы можете узнать из этого видео:

Технический обзор компании YANMAR

Двигатель 3TNV80FT разработан, чтобы быть одновременно компактным и обеспечивающим высокие характеристики крутящего момента, имея при этом мощность менее 19 кВт.

Сочетание высокого крутящего момента и низкого уровня выбросов было достигнуто за счет использования турбонаддува с регулятором 2G Eco. Разработанный в компании Yanmar, регулятор 2G Eco является электронно-управляемым регулятором оборотов, который обеспечивает высокую степень свободы в управлении количеством впрыска топлива.

Кроме того, такие возможности позволяют двигателю сохранять высокую производительность в различных условиях окружающей среды и отвечать требованиям различных областей применения.

В настоящем отчете описаны технологии, используемые в двигателе 3TNV80FT.

Введение

Небольшие дизельные двигатели мощностью до 19 кВт от компании Yanmar снискали хорошую репутацию на рынке благодаря использованию механической системы впрыска топлива в соответствии с требованиями последних регламентов по выбросам, включая американские нормы токсичности Tier 4 Final и европейские стандарты Stage V.

Ужесточение требований регламентов в области выбросов в последние годы привело к необходимости оснащения двигателей мощностью более 19 кВт системами впрыска с общим нагнетательным трубопроводом, дизельными сажевыми фильтрами (DPF) и другими дорогостоящими устройствами ограничения выбросов, что и привело к повышению спроса на менее дорогие двигатели мощностью до 19 кВт. Наряду с нормативными изменениями, Yanmar также увидела возможность спроса на двигатели мощностью чуть менее 19 кВт в качестве замены для двигателей 20 кВт. Требование в этом случае заключается в обеспечении высокого крутящего момента, несмотря на то, что двигатель относится к классу мощности менее 19 кВт.

Двигатели мощностью до 19 кВт удовлетворяют широкому спектру потребностей рынка, повсеместно используются в машинах, применяемых в обычном домашнем хозяйстве, таких как газонокосилки, а также в строительной технике и других коммерческих областях.

В этом отчете описываются технологии и особенности двигателя 3TNV80FT, который поступил в продажу в 2016 году и был разработан с учетом вышеуказанных потребностей рынка.

Обзор продукта

Двигатель 3TNV80FT был разработан для удовлетворения рыночного спроса на компактные дизельные двигатели с превосходными характеристиками крутящего момента из линейки двигателей мощностью менее 19 кВт. На Рис. 2 представлена кривая крутящего момента новой модели в сравнении с предыдущим двигателем Yanmar из этой же категории. За счет увеличения крутящего момента на средних и малых оборотах, а также улучшения номинального крутящего момента, насколько это возможно, оставаясь в категории двигателей мощностью чуть менее 19 кВт, новый агрегат способен обеспечить высокий крутящий момент в широком диапазоне оборотов. Одной из целей разработки двигателя было обеспечение соответствия требованиям американских норм токсичности Tier 4 Final. Кроме того, недавно он прошел аттестацию на соответствие европейским стандартам Stage V. В результате был получен чистый двигатель, одновременно мощный и экологичный.

Читать еще:  Что такое экономичный режим движения двигателя

В то время как вышеуказанные регламенты требуют, чтобы двигатели выполняли их предписания в отношении выбросов при работе на большой высоте (где давление воздуха низкое), проблема с предыдущей моделью с механическим регулятором заключалась в чрезмерном падении производительности, поскольку он не был способен линейным образом снижать количество впрыска топлива (которое имеет прямое отношение к количеству выбросов в выхлопных газах) в зависимости от высоты. Эта проблема была решена в новой модели, оснащенной электронным управляемым регулятором 2G Eco собственной разработки компании Yanmar, способным адаптировать крутящий момент двигателя в зависимости от высоты, тем самым сводя к минимуму потери мощности на больших высотах.

Еще одним преимуществом применения электронного регулятора является то, что он может осуществлять обмен данными по шине CAN с машиной, на которой установлен двигатель. Это дает возможность достичь высокого уровня энергоэффективности за счет интеграции с системами управления главной машины.

Рис. 1. Двигатель 3TNV80FT

Рис. 2. Кривая крутящего момента 3TNV80FT

Технологии и характеристики

  • Значительное увеличение крутящего момента благодаря использованию регулятора 2G Eco и турбонаддува

Превосходные характеристики крутящего момента (запас по крутящему моменту), являющиеся главным преимуществом нового двигателя, были достигнуты в результате использования на новом двигателе турбокомпрессора в сочетании с регулятором 2G Eco, который обеспечивает высокую степень свободы управления количеством впрыскиваемого топлива.

Поскольку сохранение мощности двигателя ниже 19 кВт было ключевым требованием, необходимо было увеличить количество впрыскиваемого топлива на низких и средних оборотах при одновременном ограничении количества впрыскиваемого топлива при работе на номинальных оборотах, чтобы оставаться в диапазоне мощностей чуть ниже 19 кВт. Поскольку такая способность регулировать количество впрыска топлива на разных оборотах не могла быть обеспечена механическим регулятором, используемым на предыдущей модели, она была реализована путем установки регулятора 2G Eco. Этот новый регулятор обеспечивает высокую степень свободы управления количеством впрыскиваемого топлива.

Затем, поскольку увеличение количества впрыскиваемого топлива при сохранении объема воздуха, вероятно, должно привести к увеличению выбросов твердых частиц, был добавлен турбокомпрессор для обеспечения достаточного количества воздуха, чтобы соответствовать увеличенному количеству впрыскиваемого топлива на низких и средних оборотах. На Рис. 4 показаны компромиссные варианты производительности, которые необходимо учитывать при выборе турбокомпрессора. Для определения оптимального выбора был построен и испытан ряд опытных образцов с различными техническими характеристиками (см. Рис. 5).

В совокупности эти меры позволили добиться на новом двигателе как улучшенных показателей выбросов, так и значительного увеличения крутящего момента.

Рис. 3. График крутящего момента

Рис. 4. Компромиссные варианты, которые следует учитывать при выборе турбокомпрессора

Рис. 5. Влияние различных технических характеристик турбокомпрессора на производительность

  • Улучшение эксплуатационных характеристик на больших высотах

Проблема эксплуатации двигателей на больших высотах (где давление и плотность воздуха ниже) заключается в том, что концентрация выхлопных газов (Sd) может повышаться из-за неполного сгорания топлива. Хотя это обычно решается путем ограничения впрыскиваемого количества топлива при работе при низком атмосферном давлении, это ухудшает эксплуатационные характеристики за счет уменьшения крутящего момента. Единственный способ решения этой проблемы с помощью обычного механического регулятора состоял в переключении между двумя различными кривыми крутящего момента для условий нормального и пониженного атмосферного давления соответственно, что приводило к нежелательному ухудшению эксплуатационных характеристик при некоторых условиях. Новая модель, напротив, использует регулятор оборотов 2G Eco, который обеспечивает возможность регулировать впрыскиваемое количество топлива на всех оборотах, а также использовать обратную связь от датчика атмосферного давления для линейного изменения впрыскиваемого количества в зависимости от высоты (см. Рис. 6). Добавление турбокомпрессора также означает, что двигатель способен лучше, чем предыдущая модель, получать необходимое количество воздуха, устраняя необходимость ограничения впрыскиваемого количества топлива на высоких оборотах даже при работе при низком атмосферном давлении. Это означает, что новый двигатель превосходит предыдущую модель, в том числе благодаря своей способности сохранять высокие эксплуатационные характеристики даже при работе при низком атмосферном давлении.

Рис. 6. Корректировки крутящего момента на большой высоте

  • Усовершенствования стали возможными благодаря функции электронного регулирования

Новый двигатель был улучшен следующим образом благодаря применению на нем регулятора оборотов 2G Eco.

  • Использование неравномерного регулирования оборотов для повышения эксплуатационных характеристик

Характеристика механического регулятора, использовавшаяся в прошлом, заключалась в том, что обороты двигателя падали (неравномерность регулирования оборотов) по мере перехода двигателя от нулевой нагрузки к полной нагрузке, причем это падение оборотов было выше на низких скоростях (см. Рис. 7). Применение регулятора оборотов 2G Eco, напротив, улучшило эксплуатационные характеристики двигателя, сохранив это падение оборотов примерно постоянным во всем диапазоне скоростей. Кроме того, обеспечивая оптимальные характеристики регулирования для машины, в которой он используется, новый двигатель также был оснащен дополнительной функцией для обеспечения нулевого падения оборотов (астатическое регулирование оборотов).

Рис. 7. Графики неравномерного регулирования оборотов и астатического регулирования

  • Улучшение расхода топлива за счет устранения избыточного впрыска при запуске или ускорении

Поскольку в механическом регуляторе впрыскиваемого количества топлива используется механизм, который управляется пружиной, в переходных режимах, таких как запуск или ускорение, в двигатель поступает избыточное топливо, что приводит к выбросам черного дыма и увеличению расхода топлива. Регулятор оборотов 2G Eco, напротив, позволяет избежать черного дыма и улучшить расход топлива, так как в нем используется линейный соленоид, регулирующий количество впрыска и поддерживающий соответствующий объем подачи топлива даже в переходных режимах.

Рис. 8. Сравнение характеристик впрыска топлива в переходных режимах

  • Возможность интеграции системы управления с машиной, на которой установлен двигатель

Благодаря возможности обмена данными CAN регулятор оборотов 2G Eco способен как передавать информацию, такую как число оборотов двигателя, нагрузка или сигналы тревоги, в систему управления главной машины, так и управлять условиями работы двигателя в соответствии с командами, отправленными из системы главной машины. Поэтому стало возможным разработать систему для машины, оснащенной гидравлическим оборудованием, например которая использовала бы этот функционал для обеспечения оптимального расхода топлива путем управления гидравликой и нагрузкой/оборотами двигателя одновременно.

Рис. 9. Блок-схема системы обмена данными



Выводы

Ниже приведены основные характеристики двигателя 3TNV80FT, описанные в настоящем отчете.

  • Благодаря оптимальному подбору турбокомпрессора к двигателю и использованию регулятора оборотов 2G Eco для управления впрыскиваемым количеством топлива, новый двигатель отвечает мировым требованиям к параметрам крутящего момента для двигателей мощностью менее 19 кВт, а также соответствует нормам выбросов, принятым в развитых странах.
  • Оптимальное управление количеством впрыска топлива с помощью регулятора оборотов 2G Eco сводит к минимуму падение производительности на большой высоте (где давление воздуха низкое), поддерживая отличные характеристики крутящего момента в таких условиях.
  • Использование возможностей обмена данными регулятора оборотов 2G Eco имеет потенциал для предоставления различных преимуществ в ответ на запросы от машины, на которой установлен двигатель.
    Несмотря на заметное увеличение количества гибридных и полностью электрических систем в качестве источников энергии в последние годы, в случае промышленного применения дизельные двигатели, как ожидается, сохранят свое превосходство с точки зрения долговечности и надежности еще в течение определенного времени. Компания Yanmar намерена продолжать разработку технологий для дизельных двигателей, поскольку она стремится поставлять продукцию, которая представляет максимальную ценность для своих клиентов на протяжении всего срока службы.

ВАЖНОЕ ЗАМЕЧАНИЕ

Оригинальный технический отчет написан на японском языке.

Настоящий документ был переведен отделом управления исследованиями и разработками.


Иппэй Судзуки (Ippei Suzuki),
Отдел разработки двигателей
Отдел управления производством промышленных энергетических продуктов
Отдел разработки решений для силовых машин

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию