6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики плавный пуск двигатель

Устройства плавного пуска асинхронных электродвигателей типа ШПУ

  • Устраняются броски тока, достигающие 10-кратного значения Iн, при прямом пуске асинхронного электродвигателя;
  • Устраняются гидроудары в трубопроводах, разрывы ременных передач в редукторах;
  • Простая и удобная встраиваемость электропривода в существующие и внедряемые системы автоматизированного управления;
  • Защита электродвигателя в аварийных режимах работы;
  • Возможность работы с несколькими двигателями (как параллельное так и последовательное включение).
  • Возможность быстрого торможения двигателя постоянным током.
Тип пускового устройстваНоминальный ток двигателя, АНоминальное напряжение двигателя, ВМощность двигателя, кВтГабаритные размеры: Ш х В х Г, мм
ШПУ-010/380103804300×400×250
ШПУ-016/380163807,5
ШПУ-025/3802538011
ШПУ-040/3804038022400×600×250
ШПУ-063/3806338030
ШПУ-100/38010038055600×800×360
ШПУ-160/38016038075
ШПУ-250/380250380132
ШПУ-400/380400380200600×1200×360
ШПУ-400/660400660315
ШПУ-630/380630380315
ШПУ-630/660630660660

Назначение

Устройства плавного пуска и защиты асинхронных электродвигателей серии ШПУ предназначены для управления асинхронными электродвигателями с короткозамкнутым ротором от 4 до 660 кВт. Обеспечивают плавный пуск при помощи увеличения напряжения. Ограничивают максимальное значение пускового тока, защищают электродвигатель в режимах работы, отличных от номинального.

Устройства ШПУ выполнены в шкафном исполнении и укомплектованы автоматическим выключателем, устройством плавного пуска в блочном исполнении, контактором для шунтирования блочного плавного пуска для работы электродвигателя напрямую с сетью.

Питание устройства осуществляется от трехфазной сети переменного тока напряжением 380, 660 В. Номинальные токи станций управления от 10 до 630 А.

Цепи управления питаются от однофазной сети переменного тока 220В. Колебание напряжения питающей сети в пределах от +10% до −15%.

Краткие характеристики

  • плавное пуск и останов двигателя за время 2 — 60 с.,
  • ограничение максимального тока пуска на уровне 2. 4,5 Iн,
  • Уставка начального напряжения 0. 90% от Uн
  • работа с электродвигателями 0,5. 1,0 номинальной мощности устройства,
  • шунтирование силовых тиристоров после окончания пуска встроенными контактами
  • прямой пуск электродвигателя при неисправности блока плавного пуска,
  • местное (с двери шкафа) и дистанционное (с пульта) управление
  • управление из АСУ верхнего уровня каналу RS-485 c протоколом MODBUS, ProfiBus, DeviceNet (по заказу).
  • Степень защиты от внешних воздействий: IP54, IP31;
  • Встроенное программируемое реле;
  • Встроенное реле «конец разгона»;
  • Встроенное реле «Работа»;
  • Рабочий диапазон температур от −40 до +40ОС;
  • Число регулируемых фаз — 2 или 3;
  • Рабочее положение — вертикальное, допустимые отклонения — не более 10° в любую сторону

Защиты

  • от неисправности силовых тиристоров;
  • от затяжки пуска;
  • максимально-токовая от коротких замыканий;
  • от перегрузки двигателя;
  • от обрыва фазы двигателя,
  • несимметрии фаз питания;
  • неправильного чередования фаз двигателя;
  • от перенапряжений со стороны сети и коммутационных перенапряжений на тиристорах;
  • от неправильной частоты сети;
  • от ошибки связи;
  • от перегрузки встроенных шунтирующих контактов.

Дополнительно

  • Гарантийный срок службы 2 года.
  • Применение
  • Системы вентиляции, насосные станции, дробилки, мельницы, конвейеры и др.

Научные конференции России

Архив конференций

Статья про устройство плавного пуска

Данная статье рассказывает про устройство плавного пуска асинхронных двигателей. Производится оценка разнообразных характеристик устройства плавного пуска и делается сравнителный анализ с частотными преобразователями и устройствами плавного пуска на основе фазового метода.

В нефте-газовом секторе в различных приводящих механизмах применяют асинхронные электрические двигатели. Для электродвигателей же рекомендуется примененять устройство плавного пуска для решения боьшого спектра задач и обеспечения устойчивости работы электродвигателя.

В процессе запуска электродвигателя самым важным режимом работы является его плавный пуск. Это обусловлено тем, что обеспечение плавного пуска определяет его ресурс двигателя и электропривода.

Достижения в области плавного пуска асинхронных электродвигателей как частотным, так и фазовым методами столь впечатляющи, что необходимость плавного пуска не вызывает уже никакого сомнения у большинства потребителей.

Читать еще:  Pmdg 777 запуск двигателей

Важные особенности и преимущества плавного пуска, хорошо известны, вот основные из них:
сокращение пусковых токов до 1,5-3 кратного значения
снижается риск механического разрушения привода и вала электродвигателя
уменьшаются электромеханические напряжения в обмотках двигателя
минимизируется гидроудар в системе
запуск насоса на открытую задвижку не имеет практически никакого отличия от пуска на закрытую задвижку.

Созданное устройство плавного пуска на основе фазового метода регулирования и его прогресс заставляет потребителя к выбирать такие устройства именно тогда, когда отсутсвует необходимость регулирования скорости вращения электропривода.

Техническое решение устройства плавного пуска с фазовым методом регулирования напряжения, состоит в применении коммутаторов, на основе которых выполнены все устройства с плавным пуском на токи от 100 до 1000 А и напряжения 0,4; 2,4; 3,1; 3,6; 4,5; 6,0 кВ.

Система управления по такому принципу предоставляет возможность выполнить выключатели с плавным пуском не только на напряжение 0,4 кВ, но и выше 1000 В с обеспечением необходимых развязок. В выключателях на напряжения 3,6 и 4,5 кВ используется последовательное соединение тиристоров.

Устройство плавного пуска обеспечивает преимущества: в 4 – 5 раз большие перегрузочные характеристики, возможность плавного увеличения тока и набора оборотов двигателя с нулевого значения. Количество включений в час не ограничивается, возможности устройств по перегрузке выше возможностей двигателей.

Главным же преимуществом решения является обеспечение предельного быстродействия при отключении в аварийной ситуации. При внедрении таких изделий в станциях с современными контроллерами защиты обеспечивается время отключения даже при коротком замыкании не более 30 мс (с учетом реакции контроллера не более 10 мс). При таком быстродействии риск повреждения оборудования от дуги минимален.

Процесс отключения носит естественный характер выключения тиристора в нуле синусоиды; при этом отсутствуют перенапряжения, возникающие при отключении контакторов и, особенно, вакуумных выключателей из-за невозможности обеспечить нулевое значение тока среза.

Все устройства плавного пуска имеют систему слежения за набором оборотов электродвигателя с автоматическим выключением функции плавного пуска при достижении оборотов, близких к номинальному значению. Это дает возможность избежать биений двигателя на завершающей стадии плавного пуска, причем независимо от нагрузки двигателя.

Таким образом, применение устройств плавного пуска в системах с электродвигателем дает большое количество преимуществ, позволяет организовать эффективный пуск двигателя и уменьшить количество выходов из строя таких систем.

Устройство плавного пуска

Устройство плавного пуска (УПП) — механическое, электротехническое (электронное) или электромеханическое устройство, используемое для плавного пуска (остановки) электродвигателей с небольшим моментом страгивания (например с вентиляторной характеристикой) рабочей машины.

Содержание

  • 1 Назначение
  • 2 Принцип действия
  • 3 Синонимы
  • 4 Примечания
  • 5 Литература
  • 6 Ссылки

Назначение [ править | править код ]

Управление процессом запуска, работы и остановки электродвигателей:

  • плавный разгон;
  • плавная остановка;
  • уменьшение пускового тока;
  • согласование крутящего момента двигателя с моментом нагрузки.

Во время пуска крутящий момент за доли секунды часто достигает 150—200 % от номинального, что может привести к выходу из строя механической части привода. При этом пусковой ток может быть в 6—8 раз больше номинального, из-за этого в местной электрической сети возникает падение напряжения. Падение напряжения может создавать проблемы для других нагрузок сети, а если падение напряжения слишком велико, то может не запуститься и сам двигатель. Применение устройств плавного пуска обеспечивает ограничение скорости нарастания и максимального значения пускового тока в течение заданного времени (после применения УПП значение пускового тока уменьшается до 3-4 номинальных). В электронных устройствах плавного пуска ограничение тока достигается путём плавного нарастания напряжения на обмотках электродвигателя. Это позволяет во время пуска удерживать параметры электродвигателя (ток, напряжение и т. д.) в безопасных пределах, что снижает вероятность перегрева обмоток и устраняет рывки в механической части привода, а также вероятность возникновения гидравлических ударов в трубах и задвижках в момент пуска и остановки. В конечном итоге правильно выбранное и настроенное устройство плавного пуска повышает показатели долговечности и безотказности электродвигателя и его привода.

Читать еще:  Двигатель yanmar l100 характеристики

Принцип действия [ править | править код ]

Мгновенное значение электромагнитного момента двигателя зависит не только от угловой скорости, параметров двигателя и параметров системы питания, но и от производных этих величин и их начальных значений [1] .

Вариация многих переменных значительно расширяет возможности управления динамическими режимами работы асинхронных электроприводов. Контактная коммутационная аппаратура позволяет реализовать только некоторые частные случаи формирования переходных процессов, связанных с введением в цепи двигателя сопротивлений и гашением его незатухающего магнитного поля, также могут использоваться тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее. Другими словами, возможны частные решения воздействием только на параметры двигателя. Применение в качестве коммутационных аппаратов магнитных усилителей позволяет дополнительно реализовать только воздействие на производную изменения напряжения.

Реализация большинства возможных способов формирования динамических характеристик стала принципиально осуществимой только с появлением полупроводниковых управляемых вентилей, которые из-за бесконтактности, безынерционности и легкости изменения среднего значения пропускаемого тока оказываются почти идеальными коммутирующими элементами для управления асинхронными электродвигателями.

Тиристорные коммутаторы (софтстартеры) и преобразователи частоты на основе управляемых вентилей позволяют сравнительно просто не только задавать требуемый темп изменения приложенного напряжения и создавать необходимые начальные условия, но также осуществлять фазовое регулирование в цепях двигателя и менять параметры системы питающих напряжений. Эти возможности делают не только принципиально возможным, но технически осуществимым и практически целесообразным управление электромагнитными переходными моментами и, следовательно, динамикой асинхронного электропривода.

В зависимости от характера нагрузки устройства плавного пуска обеспечивают различные режимы управления электродвигателем, реализуя ту или иную зависимость между скоростью вращения электродвигателя и выходным напряжением.

Режим с линейной зависимостью между напряжением и частотой (U/f=const) реализуется простейшими преобразователями частоты для обеспечения постоянного момента нагрузки и используется для управления синхронными двигателями или двигателями, подключенными параллельно. Для регулирования электроприводов насосов и вентиляторов используется квадратичная зависимость напряжение/частота (U/f 2 =const). К более совершенным методам управления относятся метод управления потокосцеплением (Flux Current Control — FCC), и метод бессенсорного векторного управления (Sensorless Vector Control — SVC). Оба метода базируются на использовании адаптивной модели электродвигателя, которая строится с помощью специализированного вычислительного устройства, входящего в состав системы управления преобразователя [2] .

Синонимы [ править | править код ]

УПП, устройство мягкого пуска, плавный пускатель, мягкий пускатель, софтстартер

УБПВД — устройство безударного пуска высоковольтных двигателей.

Устройства плавного пуска ОВЕН УПП1 и УПП2

Сразу после запуска двигателя крутящий момент может достигать 150–200 %, а ток – 600–800 % от номинального, из-за чего в местной электросети могут возникать провалы и просадки напряжения. Для ограничения пускового момента, обеспечения плавного пуска и торможения асинхронных двигателей компания ОВЕН разработала серию устройств плавного пуска – УПП. Устройства предназначены для легкого и нормального режимов пуска и должны применяться совместно с устройствами защиты двигателя. Снижение пускового тока позволяет использовать пускатели и предохранители меньших номиналов.

Устройство УПП обеспечивает бесступенчатый, плавный разгон и останов электродвигателя методом плавного нарастания/спада напряжения в течение заданного времени. Плавный пуск положительно влияет на функционирование системы и предотвращает различные негативные проявления: удары шестеренок редукторов, проскальзывание клиновидных ремней, гидравлические удары трубопроводов, колебания в конвейерных системах и т. д.

Компания ОВЕН выпускает компактные устройства УПП1 (3, 15, 25 А) и общепромышленного назначения УПП2 (18-200 А).

Рис. 1. Диаграмма работы УПП1

Читать еще:  Давление масла двигатель chpa

Компактные устройства плавного пуска ОВЕН УПП1

Устройства линейки ОВЕН УПП1 предназначены для плавного пуска и остановки трехфазных двигателей переменного тока мощностью до 11 кВт. Важнейшей функцией УПП1 является импульсный старт – возможность подачи на двигатель полного напряжения на краткое время (до 200 мс) для создания необходимого пускового момента (рис. 1). Универсальное управляющее напряжение позволяет организовать команду запуска/останова как с прибора автоматики (24 В), так и от сети 220 или 380 В. Основные технические характеристики ОВЕН УПП1 приведены в табл. 1, 3.

Рис. 2. Диаграмма работы УПП2

Простая и надежная схемотехника УПП1 обеспечивает неограниченное количество запусков в час, что особо важно при частых запусках двигателя. Простая настройка УПП1 осуществляется с помощью трех поворотных переключателей, определяющих пусковой момент, время разгона и время замедления.

Компактный корпус позволяет устанавливать УПП1 в шкафы автоматики в качестве замены обычных контакторов. Основными объектами применения УПП1 являются небольшие (до 11 кВт)

приводы: конвейеры, мешалки, небольшие насосы и компрессоры.

Общепромышленные устройства плавного пуска ОВЕН УПП2

Устройства плавного пуска УПП2 предназначены для управления пуском и остановкой электродвигателя мощностью до 110 кВт в режиме плавного нарастания напряжения и используются с внешним устройством защиты электродвигателя.

Рис. 3. Минимизирование механического износа
оборудования

УПП2 имеет встроенный байпасный контактор, который после выхода на номинальную частоту вращения двигателя перебрасывает питание напрямую на сеть. Такая схема позволяет увеличить КПД системы и снизить нагрев тиристоров УПП2. Она востребована в применениях с редкими запусками и продолжительным временем работы на номинальной частоте (большинство насосов, вентиляторов и компрессоров). Встроенные шунтирующие контакты УПП2 уменьшают потери мощности, тем самым улучшается энергоэффективность работы всей установки и обеспечивается повышенная эксплуатационная надежность оборудования.

Отличительной особенностью линейки УПП2 является климатическое исполнение – допускается работа в условиях от -10 до +50 °С без снижения допустимых выходных токов. Основные технические характеристики УПП2 приведены в табл. 2, 3.

Применение ОВЕН УПП

Устройство плавного пуска ОВЕН представляет собой простое и экономичное решение для применения в целом ряде отраслей, а также для замены пусковых сборок по схеме «звезда-треугольник». УПП позволит избежать гидроудара в системах водоснабжения, гарантировать длительный срок службы насосного оборудования и минимизировать механический износ оборудования (рис. 3). Благодаря низкому уровню шума их можно использовать в жилых и офисных зданиях с насосами, конвейерами и вентиляторами.

Рис. 4. Плавный пуск скважинного насоса

УПП применяются на станциях первого подъема для плавного пуска скважинного насоса при перекачивании воды из скважины в емкость, то есть при дискретном управлении без изменения частоты вращения двигателя насоса. В данном применении УПП выступает как бюджетная альтернатива преобразователю частоты, позволяющая безопасно, без бросков тока и гидроударов осуществить пуск и останов насоса (рис. 4).

На повысительных насосных станциях (ПНС) при недостаточном напоре в системе центрального водоснабжения ПЧВ стабилизирует давление в напорном коллекторе, управляет повысительным насосом и поддерживает установленное давление в системе. УПП может устанавливаться вместе с ПЧВ для плавного пуска дополнительных насосов (рис. 5) или рассматриваться как альтернатива ПЧВ в случае, если регулировка частоты вращения насоса невозможна или нежелательна.

Рис. 5. Плавный пуск дополнительных насосов

Основная задача системы дымоудаления – обеспечение условий безопасной эвакуации людей в случае возникновения пожара. Учитывая, что в системе дымоудаления используются вентиляторы значительной мощности, при пусках и остановах напрямую от сети могут возникать просадки напряжения (рис. 6). УПП снизит пусковой ток, превышающий номинальный в 7-8 раз.

Таблица 1. Электрические характеристики ОВЕН УПП1

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector