0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики линейного асинхронного двигателя

Линейные двигатели нового поколения

Приводы подач всех современных металлообрабатывающих станков с ЧПУ, в том числе и электроэрозионных (ЭЭ) строятся по традиционной схеме. Так, в одном из типажей ЭЭ станков перемещения рабочего органа РО (каретки подач) осуществляется от двигателя постоянного тока через ременную передачу на ходовой винт. Через шариковую гайку (она скреплена с РО пружинами механизма защиты от соударений) вращение винта трансформируется в продольное перемещение РО.

Ременный привод станков

Более надежные и современные приводы выполнены без ременной передачи. В этих приводах высокомоментный двигатель переменного тока непосредственно соединен с ходовым винтом.

Непосредственный привод

Недостатки указанных видов приводов достаточно известны и очевидны:

  • большое количество промежуточных элементов от источника энергии до РО;
  • громадная инерционность этих элементов, особенно в крупногабаритных станках;
  • наличие зазоров в передающих устройствах;
  • >трение во множестве сопрягаемых деталей (резко изменяющееся при переходе системы из состояния покоя в состояние движения);
  • температурные и упругие деформации практически всех передающих звеньев;
  • износ сопрягаемых элементов в процессе эксплуатации и потеря исходной точности;
  • погрешности в шаге ходового винта и накопленная погрешность по длине.

Поскольку эти недостатки определяют основные качественные характеристики приводов (точность и равномерность хода РО, величину мертвого хода при реверсе, допустимые ускорения и скорости РО), конструкторская мысль станкостроителей давно пытается как-то уменьшить их влияние на работу приводов и оборудования в целом. Например, в соединении ходового винта с гайкой для уменьшения трения уже давно используют дорогое и сложное шариковинтовое соединение; для ликвидации зазоров в соединение винта с гайкой вводятся специальные устройства натяга соединения; ходовые винты особо точных станков изготавливают по классу эталонных; погрешности шага винтов пытаются скомпенсировать системами компенсаторов; в борьбе с температурными деформациями создаются изощрённые системы охлаждения и т.д. Проблемы, проблемы, проблемы. И уже давно ясно, что проблемы приводов с ходовыми винтами не решить никогда из-за их физико-технической сущности и построенного типа, как такового.

Архаичность рассмотренных приводов давно очевидна и передовая конструкторская мысль уже много лет работала над задачей кардинальной замены типовых приводов в металлообрабатывающем оборудовании на какие-то другие, более совершенные. Как говорят, гениальное — просто. И таким гениальным решением было использовать в качестве приводов подач станков линейные двигатели.

Электромагнитная система

Принцип линейного двигателя (ЛД) не нов и, в общем, известен даже школьнику, поскольку прототипом ЛД является простейшая электромагнитная система. Такая система состоит из металлического сердечника-магнита и статорной обмотки. При подаче тока определенной полярности в обмотку сердечник сместится в ту или иную сторону, причем практически мгновенно. Изменение полярности сигнала на обмотку приведет к обратному ходу сердечника. Как видим, от источника энергии к РО нет никаких промежуточных элементов, передача энергии осуществляется через воздушный зазор, ничего не надо вращать, сразу возможно осуществление главной задачи — продольного движения РО. Гениальность решения, естественно, сразу была оценена по достоинству. На рассмотренном принципе уже десятилетия работают все элементы электроавтоматики, системы электротормозов, системы защиты, специальное оборудование ударного типа и т.д. Громадный опыт использования электромагнитных систем четко выявил их потрясающие достоинства: удивительная простота конструкции и применения, почти мгновенная остановка, мгновенный реверс, сверх быстрота срабатывания, большие усилия, простота настройки. Но не было только одного — возможности регулировать скорость РО в электромагнитной системе и обеспечивать тем самым регулируемое поступательное движение РО (сердечника). А без этой возможности применить электромагнитный привод (несмотря на его гениальность), как движитель в оборудовании, было невозможно.

Линейный электродвигатель

Потребовались многие годы работы ученых и конструкторов в разных странах, прежде чем был достигнут успех. Особенно интенсивно велись работы в Японии, где электромагнитный привод (уже как линейный привод) был впервые успешно использован как движитель для сверхскоростных поездов. Там же были попытки создания линейных приводов для металлообрабатывающих станков, но они имели существенные недостатки: создавали сильные магнитные поля, грелись, а главное не обеспечивали равномерности в движении РО. Лишь на пороге нового тысячелетия начался серийный выпуск станков (пока в основном электроискровых (электроэрозионных)) с принципиально новыми линейными двигателями, в которых решены все проблемы по обеспечению равномерным движением РО станков со сверхвысокой точностью, с большим диапазоном регулирования скорости, с громадными ускорениями, мгновенным реверсом, с простотой обслуживания и наладки и др.

В принципе, конструкция ЛД изменилась не сильно. Собственно двигатель состоит всего из 2 (!) элементов: электромагнитного статора и плоского ротора, между которыми лишь воздушный зазор. Третий обязательный элемент – оптическая или другая измерительная линейка с высокой дискретностью (0,1 мкм). Без нее система управления станка не может определить текущие координаты. И статор, и ротор выполнены в виде плоских, легко снимаемых блоков: статор крепится к станине или колонне станка, ротор — к рабочему органу (РО). Ротор элементарно прост: он состоит из ряда прямоугольных сильных (редкоземельных) постоянных магнитов. Закреплены магниты на тонкой плите из специальной высокопрочной керамики, коэффициент температурного расширения которой в два раза меньше чем у гранита. Использование керамики совместно с эффективной системой охлаждения решило многие проблемы линейных приводов, связанные с температурными факторами, с наличием сильных магнитных полей, с жесткостью конструкции и т.п.

Точная и равномерная подача РО во всем диапазоне скоростей и нагрузок обеспечивается двумя техническими решениями:

  • крепление постоянных магнитов под определенным фиксированным углом, который был открыт в ходе длительных экспериментов;
  • реализация высокоэффективной 6-ти фазной импульсной системы управления (система SMC).

Компания «СОДИК» организовала на своих заводах серийный выпуск широкой гаммы ЛД с характеристиками: с ходом подач от 100 до 2220 мм, с максимальной скоростью перемещения РО до 180 м/мин с ускорениями до 20G (. ) при точности исполнения заданных перемещений (в нормальном режиме работ) равной 0,0001мм (0,1 мкм). Нагрев этих ЛД при работе не превышает + 2° С от температуры помещения. Обеспечивается практически мгновенная остановка РО, реверс, моментальная реакция привода на команды системы ЧПУ и т.д. На один и тот же рабочий орган монтируется (например, для увеличения мощности) несколько линейных двигателей. Так, в частности, устроен привод оси Z всех ЭЭ прошивочных станков «СОДИК».

Как указывалось, и статор, и ротор ЛД предельно просты. Статор исполнен в виде прямоугольного блока и крепится несколькими болтами к несущей конструкции станка. В приводе оси Z — два статора. Они размещены по обе стороны вертикального ползуна. К каждому статору крепятся два патрубка системы охлаждения статора и кабели подвода энергии и управления. Пластина ротора жестко крепится болтами к подвижной каретке (РО ). Так как в приводе оси Z два ЛД, то на каретке крепятся, соответственно, два ротора , каждый напротив своего статора. Система специальных направляющих и пневмопротивовес обеспечивают исключительную легкость хода каретки, практически без усилий. Приводы по осям X, Y прошивочных станков и в приводах X, Y, U, V проволочно-вырезных станков проще — в них всего по одному ЛД.

Особенно следует отметить простоту обслуживания ЛД, простоту периодической чистки (при необходимости), профилактики и ремонта. Так, чтобы заменить ротор ЛД, достаточно открутить несколько болтов, крепящих ротор к РО. Для замены статора помимо болтов нужно лишь снять две трубки системы охлаждения статора и отсоединить кабель. Сравните эти действия, например, с комплексом работ по снятию шаровой гайки или замене подшипника ходового винта.

Эффективность применения новых приводов сразу же нашло убедительное подтверждение. Новая серия ЭЭ станков с ЛД имеет резко повышенные технико-технологические и эксплуатационные характеристики по сравнению с аналогичными станками, имеющими традиционные приводы. Так, производительность ЭЭ прошивных станков с ЛД выше, чем у станков с обычными приводами как минимум в 2 раза, а ЭЭ проволочно-вырезных – на 50%. Повысилась точность станков, расширились диапазоны параметров обрабатываемых деталей и т.д. Для объяснения этого необходимо рассматривать определенные тонкости ЭЭ технологий и работы ЭЭ оборудования, а это уже тема другая.

Читать еще:  Двигатель 21124 как регулировать

Нижеследующая таблица позволяет зрительно сопоставить рассматриваемые привода.

Назад

Сравнение традиционных и линейных приводов станков
Факторы, характеристикиТрадиционные приводы с ШВПЛинейные приводы
Промежуточные элементы передачи к РОРотор, вал, шкив, ремень, шкив, винт, шарики, гайкаНЕТ
Передача энергии на РООт статора электродвигателя на ротор, через вал ротора на шкив, на ходовой винт, на шарики гайки, на гайку и на РОНЕТ
Потери на трениеПодшипники ротора, ременная передача, подшипники ходового винта, шарики, плоскости профиля канавки гайкиНЕТ
Элементы с упругими деформациямиВал ротора, ремень шкива, вал винта, плоскости профиля канавки винта, шарики, плоскости профиля канавки гайкиНЕТ
Элементы с температурными деформациями в приводеРотор двигателя, вал ротора, подшипники ротора, шкив, ремень, шкив, подшипники винта, винт, шарики, гайкаНЕТ
Изнашиваемые элементы приводаПодшипники ротора электродвигателя, шкив, ремень, шкив, подшипники винта, ходовой винт, шарики, гайкаНЕТ
Обязательные зоны для смазкиПодшипники ротора, подшипники винта, зона ШВПНЕТ
Элементы, создающие инерционные нагрузки при ускорениях и реверсеВращающийся ротор, вал ротора, внутренние кольца подшипников вала ротора, шкивы, ремень, подшипники винта, винт, гайка и шарики в поступательном движенииПлоский ротор привода в поступательном движении
Основные зоны загрязнения (уровень сложности очистки)Подшипники вала ротора двигателя (сложно), подшипники ходового винта (сложно), ШВП-гайка (очень сложно)Зазор между статором и плоским ротора (просто)

Вперед

Автор статьи — к.т.н. Серебреницкий П.П., БГТУ «Военмех» им. Д.Ф. Устинова

Подписка

Подпишись на наши новости

Получайте первыми актуальную информацию ООО «Электропривод»

Линейные электродвигатели. Основные разновидности и их применение

Назначение и типы линейных электродвигателей

Ротационные электродвигатели обычно предназначены для реализации вращательного движения рабочего механизма. Иногда эти двигатели осуществляют поступательные или возвратно-поступательные движения. Достигается это при помощи кинематических передач усложняющих конструкцию и снижающих коэффициент полезного действия привода. Применение линейных электродвигателей позволяет устранить эти недостатки.

В ротационных электродвигателях индуктор представляет собой цилиндр, внутри которого вращается ротор. В плоских линейных электродвигателях индуктор развернут на плоскости. Индуктор цилиндрического линейного электродвигателя — цилиндр, внутри которого линейно перемещаются вторичные элементы.

Основные типы линейных электродвигателей: линейные асинхронные электродвигатели, линейные синхронные электродвигатели, линейные электродвигатели постоянного тока, линейные шаговые электродвигатели. Наибольшее применение получили линейные асинхронные электродвигатели. Первичная обмотка асинхронного линейного электродвигателя возбуждает бегущее электромагнитное поле. В результате взаимодействия первичного поля и индуктируемых токов во вторичном элементе возникает тяговое усилие. Вторичный элемент прямолинейно перемещается. В линейных асинхронных электродвигателях имеют место ухудшающие характеристики краевые эффекты. Разомкнутость магнитной цепи в продольном направлении вызывает продольный краевой эффект. Увеличение числа полюсов индуктора снижает продольный краевой эффект. Наличие на краях вторичного элемента продольных составляющих токов, не создающих полезное тяговое усилие — поперечный краевой эффект. Увеличение ширины вторичного элемента снижает влияние поперечного краевого эффекта. Итак, принцип действия как ротационных, так и линейных электродвигателей имеет одну и ту же физическую природу.

Применение линейных электродвигателей

Линейные электродвигатели применяются там, где они упрощают конструкцию, повышают производительность машин и оборудования, или в тех случаях, когда использование ротационных электродвигателей по их характеристикам невозможно. Применение линейных электродвигателей наиболее перспективно в промышленном и пассажирском транспорте. В конвейерных поездах индукторы электропривода расположены вдоль рельсового пути, вторичный элемент электродвигателя находится на подвижном составе. Такие поезда удобны при транспортировке угля, руды и строительных материалов. На примере системы городского эстакадного пассажирского транспорта показан другой вариант исполнения линейного электродвигателя, где вторичный элемент установлен вдоль пути в виде токопроводящей вертикальной полосы. А индукторы установлены в движущемся вагоне. Линейные асинхронные электродвигатели широко применяются в приводах различных исполнительных механизмов и устройств. В приводах разъединителей тяговых подстанций цилиндрический линей электродвигатель существенно упрощает конструкцию, повышает быстродействие и эксплуатационную надежность оборудования.

В ряде случаев, вторичным элементом двигателя может быть и деталь рабочего механизма. Привод поворотного стола манипулятора осуществлен на базе плоских линейных электродвигателей, что обеспечивает высокую точность углового позиционирования стола и существенно упрощает механическую часть устройства. В отдельных случаях, линейные асинхронные электродвигатели могут эффективно выполнять сразу несколько целевых функций. Литейная карусельная машина. Ее привод реализован на линейных электродвигателях плоского исполнения. Он может перемещать и при технологической необходимости подогревать из ложницы. Коэффициент полезного действия таких приводов значительно выше, чем КПД приводов с одной целевой функцией.

Принцип работы линейного асинхронного электродвигателя может быть использован при создании других электромагнитных устройств, например в сепараторах цветных металлов. Линейные электродвигатели успешно применяются в различных системах внутрицехового транспорта. Основными преимуществами линейных электродвигателей являются возможность получения непосредственного прямолинейного движения, больших скоростей и ускорений, простота конструкции, бесшумность и надежность работы. Развитие микропроцессорной техники и разработка новых средств управления позволяют постоянно расширять области эффективного применения линейных электродвигателей.

Научная электронная библиотека

Шигин А. О., Гилев А. В., Шигина А. А.,

3.4. Экспериментальные исследования характеристик линейного асинхронного двигателя, применительно к режимам работы механизма подачи вращательно-подающего органа бурового станка

Для исследования адаптивного механизма подачи рабочего органа бурового станка на основе линейного асинхронного двигателя для привода подачи рабочего органа бурового станка, разработан экспериментальный лабораторный образец электромагнитного механизма подачи бурового станка. Схема экспериментальной установки с трехфазным асинхронным линейным двигателем представлена на рис. 3.22.

Стенд состоит из стальной рамы 1 с роликовыми опорами 2, в которых подвижно закреплен массивный ротор 3 в виде стальной магнитной трубы. Статор 4 в виде цилиндрических обмоток расположен вокруг массивного ротора 3 с возможностью продольного перемещения последнего внутри статора. Катушки статора могут подключаться попеременно, как показано на рисунке по одной или несколько, на каждую фазу. Таким образом, стенд позволяет проанализировать режимы работы двигателя. Для этого он оснащен динамометром для измерения усилия подачи, а также приборами для измерения тока и напряжения в определенных фазах. Двигатель стенда не имеет магнитопровода для получения характеристик, зависящих от минимального числа факторов. Двигатель подключается к сети переменного трехфазного напряжения 380 В.

Данный привод является линейной электрической машиной и имеет в своей основе статорную обмотку, подключаемую к сети трехфазного переменного тока, напряжением 380 В. В качестве ротора используются стандартные трубы бурового става, состоящие из стали, обладающей ферромагнитными свойствами.

Рис. 3.22. Схема экспериментальной установки с трехфазным асинхронным линейным двигателем

Конструкция линейного трехфазного асинхронного двигателя (рис. 3.22 и 3.23) является простой и технологичной. Его изготовление возможно как в условиях отдельного предприятия по изготовлению электрических двигателей, так и в условиях специально оборудованного цеха. Для производственной базы необходимы станки для токарных работ, станки для намотки проволоки обмоток, печь для сушки и обжига обмоток и других элементов. Двигатель может также состоять из нескольких секций, в каждую из которых уложено по одной обмотке. В этом случае перегоревшая обмотка может быть извлечена из обоймы и заменена достаточно быстро.

Рис. 3.23. Общий вид экспериментальной установки с трехфазным асинхронным линейным двигателем

В результате лабораторных исследований были получены механические характеристики линейной асинхронной машины с массивным ротором (рис. 3.24)

Рис. 3.24. Механическая характеристика линейного трехфазного асинхронного двигателя с массивным ротором, при смешанном подключении
секций двигателя (Характеристика 1 получена при напряжении сети 380 В; характеристика 2 получена при напряжении сети 190 В)

Показанные на рис. 3.24 механические характеристики получены с использованием одной установки при подключении на разное напряжение сети. Таким образом, характеристику 1 имеет линейный двигатель с мощность 28 кВт, а характеристику 2 – двигатель с мощностью 13 кВт. В результате начальных испытаний выяснено, что для получения усилия подачи 200 и 300 кН в номинальном режиме двигатель с массивным ротором должен будет иметь ориентировочную мощность 50 и 75 кВт соответственно. При этом совершенствование конструкции ротора и применение регулирования частоты напряжения и скорости подачи позволит существенно снизить потребляемую мощность привода.

В результате проведенных испытаний выяснено, что при потребляемой мощности 6,35 кВт и нулевой скорости двигатель без ферромагнитного магнитопровода развивал усилие с учетом погрешности приборов 80–90 Н. Без нагрузки двигатель развивал линейную скорость 0,31 м/с. Наличие ферромагнитного магнитопровода, с учетом его магнитного насыщения, увеличивает эффективность электрического двигателя в несколько десятков раз.

Механическая характеристика асинхронного двигателя вращательного действия представлена на рис. 3.25.

Рис. 3.25. Механическая характеристика асинхронного двигателя вращательного действия

Асинхронная машина линейного действия имеет схожий вид механической характеристики. Отличие заключается в наличии краевых эффектов. Однако при условии применения в качестве массивного ротора трубы достаточно большой длины влияние краевого эффекта оказывает меньшее значение [57]. Активное r2 и индуктивное Xσ2 сопротивления массивного ротора ввиду сильно выраженного поверхностного эффекта значительно зависят от скольжения. Так, в случае f1 = 50 Гц при пуске (S = 1) эквивалентная глубина проникновения токов в роторе составляет только 3 мм, при S = 0,02 – около 20 мм, при S = 0,001 – около 100 мм [58]. Поэтому при пуске сопротивление r2 весьма велико и Xσ2 мало, а с уменьшением скольжения сопротивление r2 уменьшается, а Xσ2 – увеличивается.

В результате сильного проявления поверхностного эффекта пусковой момент двигателя с массивным ротором достаточно велик
Mп /Mн = 1,5–2 (рис. 3.26).

Однако двигатели малой мощности с массивными роторами при f1 = 50 Гц имеют низкие КПД и коэффициент мощности. Но с увеличением мощности растет также и КПД.

Массивный ротор имеет большое преимущество в прочности. В связи с этим асинхронные двигатели с массивным ротором вполне могут применяться в качестве привода подачи рабочего органа бурового станка.

Поскольку двигатель в лабораторном стенде не имеет ферромагнитного магнитопровода, необходимо рассчитать номинальное подающее усилие в случае наличия магнитопровода, изготовленного из электротехнической стали. А затем найти мощность двигателя, способного создавать подающее усилие до 200 или 300 кН в зависимости от модели бурового станка. Для этого необходимо рассчитать магнитное сопротивление цепи в случае с магнитопроводом и без него.

Рис. 3.26. Механическая характеристика асинхронного двигателя с массивным ротором

Схема магнитной цепи одной обмотки статора линейного асинхронного двигателя с массивным ротором без магнитопровода показана на разрезе тороидальной обмотки (рис. 3.27).

Рис. 3.27. Схема магнитной цепи одной обмотки статора линейного асинхронного двигателя с массивным ротором без магнитопровода:
1 – обмотка статора; 2 – массивный ротор в виде стальной трубы l1, l2, l3, l4 – участки магнитной цепи

Схема магнитной цепи обмотки статора с магнитопроводом показана на рис. 3.28.

Рис. 3.28. Схема магнитной цепи одной обмотки статора линейного асинхронного двигателя с массивным ротором с магнитопроводом.
Здесь 1 – обмотка статора; 2 – массивный ротор в виде стальной трубы l1m, l2m, l3m, l4m, l5m, l6m – участки магнитной цепи с магнитопроводом

Магнитное сопротивление участка цепи определяется из следующего выражения [22, 23]

Гн–1,

где Rm – магнитное сопротивление участка цепи, Гн–1; l – длина участка магнитной цепи, м; μ0 – магнитная постоянная, Гн/м; μr – магнитная проницаемость вещества участка магнитной цепи; S – площадь поперечного сечения участка магнитной цепи, м2.

Магнитное сопротивление цепи без магнитопровода определяется следующим образом

Длины участков магнитной цепи без магнитопровода (рис. 3.27): l1 = 0,02 м; l2 = 0,06 м; l3 = 0,02 м; l4 = 0,06 м. Магнитная проницаемость вещества участков магнитной цепи [57] μr1 = 1 (воздух); μr2 = 1 (воздух); μr3 = 1 (воздух); μr4 = 3500 (среднеуглеродистая сталь 45). Площади поперечного сечения участков магнитной цепи принимаем равными S. μ0 = 1,257∙10–6 Гн/м.

Магнитное сопротивление цепи с магнитопроводом из электротехнической стали определяется следующим образом

Длины участков магнитной цепи с магнитопроводом (рис. 3.28): l1m = 0,0005 м; l2m = 0,0195 м; l3m = 0,06 м; l4m = 0,0195 м; l5m = 0,0005 м; l6m = 0,06 м. Магнитная проницаемость вещества участков магнитной цепи [20] μr1m = 1 (воздух); μr2m = 7500 (электротехническая сталь); μr3m = 7500 (электротехническая сталь); μr4m = 7500 (электротехническая сталь); μr5m = 1 (воздух); μr6m = 3500 (среднеуглеродистая сталь 45). Площади поперечного сечения участков магнитной цепи принимаем равными S. μ0 = 1,257∙10–6 Гн/м.

Ориентировочное усилие, развиваемое двигателем, обмотки которого имеют магнитопровод, можно найти из соотношения:

При условии, что воздушный зазор 0,5 мм, при аналогичных размерах магнитопровода получим:

Таким образом, трехфазный асинхронный двигатель с массивным ротором, имеющий аналогичные размеры, оснащенный магнитопроводом будет развивать усилие в пределах 7766–8736,5 Н. Среднее значение усилия P1 = 8251 Н при потребляемой мощности 6,35 кВт.

Для получения усилия подачи 200 кН данный привод при минимальной рабочей скорости 15,5 см/с будет иметь ориентировочную мощность с учетом магнитных и электрических потерь 154 кВт. Однако скорость бурения в несколько раз меньше. При увеличении числа пар полюсов рабочая скорость кратно уменьшается, а мощность, необходимая для создания нужного усилия подачи кратно уменьшается.

Потребляемая мощность также может быть уменьшена:

1. Увеличением площади поперечного сечения и магнитной проницаемости магнитопровода.

2. Уменьшением магнитного сопротивления в воздушном зазоре.

3. Нанесением металлического слоя с высокой электрической проводимостью на поверхность массивного ротора.

4. Созданием пазов в теле массивного ротора.

В результате проведенных экспериментальных исследований разработан электромагнитный адаптивный механизм подачи рабочего органа бурового станка. Расчетно-экспериментальным путем были получены механические характеристики электромагнитных механизмов подачи для разных величин максимального усилия подачи различных скоростей бурения (рис. 3.29).

Рис. 3.29. Механические характеристики электромагнитных механизмов подачи с максимальным усилием подачи 200, 250, 300, 350, 400 кН
и различными скоростями бурения

Данные характеристики получены для линейных электродвигателей специальной конструкции, работающих от источника электроэнергии напряжением 660 В с коэффициентом запаса мощности 2,0, что позволяет без перегрева выдерживать колебания тока в обмотке статора. Кроме того, данные колебания тока сигнализируют без значительной задержки об изменениях физико-механических характеристик горной породы. Эти сигналы могут использоваться для определения количественных показателей, соответствующих определенным корректировкам усилия подачи, частоты вращения и производительности компрессора. Корректировки режимных параметров необходимы для поддержания производительности и прогнозируемого ресурса бурового инструмента в заданных пределах.

Применение линейных двигателей — Достоинства и недостатки линейного двигателя

Содержание материала

  • Применение линейных двигателей
  • Историческая справка
  • Принцип действия и конструкции
  • Достоинства и недостатки
  • Регулирование скорости и тяги
  • Перспективы применения

Достоинствами линейных асинхронных двигателей, используемых в качестве двигателя транспортных средств, являются:
отсутствие скользящих электрических контактов, вращающихся деталей и зубчатых колес; из-за отсутствия в приводе зубчатой передачи эксплуатационные расходы могут быть снижены на 25%;
отсутствие ограничений, обусловливаемых сцеплением колес с рельсами;
уменьшение массы двигателя, установленного на вагоне, связанное с тем, что элемент, играющий роль вторичного элемента, установлен на полотне дороги, однако в отличие от двигателей с вращающимися частями скорость ротора относительно статора не может быть повышена путем применения зубчатых колес. Это способствует увеличению веса линейного двигателя с продольным потоком по сравнению с эквивалентным двигателем с вращающимися частями, установленным на обычном вагоне. Следует сказать, что в связи с изобретением линейного двигателя с поперечным потоком этот недостаток несколько смягчается·;
улучшение тепловых характеристик, объясняемое тем, что работающий двигатель удаляется от нагреваемой им части реактивной шины;
отсутствие ограничений, накладываемых предельно допустимой окружной скоростью вращающихся деталей;
при экстренном торможении не возникает проблем. Чтобы затормозить вагон, надо поменять направление бегущего магнитного поля переключением двух фаз или питать обмотки линейного двигателя постоянным током, а также можно использовать рекуперативное торможение. Для этого необходимо снижать частоту питания, чтобы синхронная скорость была меньше скорости вагона. В этом случае линейный двигатель будет работать в режиме генератора [113];
двигатель бесшумный, не загрязняет воздух [122].

Линейному двигателю присущи следующие недостатки:
применение линейного двигателя связано с недостаточным использованием габарита подвижного состава;
увеличение стоимости из-за необходимости выполнения реактивной шины из цветного металла;
относительно низкий к.п.д. и коэффициент мощности; необходимость выполнения поперечной направляющей системы; трудность обеспечения прохождения кривых участков пути и стрелочных переводов;
необходимость обеспечения питания трехфазным током при переменных напряжениях и частоте [113, 154];
необходимо поддерживать малый зазор между неподвижным и подвижным элементами двигателя [122].
Есть еще одна проблема, которая присуща всем высокоскоростным видам электрического транспорта, — это проблема токосъема при высоких скоростях. Этим вопросом занимаются во многих странах мира [196, 197].
Все указанные недостатки являются недостатками конструкций и могут быть устранены по мере дальнейших разработок, а к.п.д. и cosφ зависят от особенностей линейного асинхронного двигателя.

Магнитные поля в тяговых линейных двигателях отличаются от магнитных полей реактивных асинхронных двигателей в силу ряда обстоятельств. Одни из них связаны с различием в параметрах (например, в десятки раз больший зазор в магнитной системе линейного двигателя) и отражаются на количественной стороне явлений, другие связаны с особенностями конструкции линейного двигателя и вызывают новые физические явления в машине.

Отметим важнейшие из них.
Индуктор тягового линейного двигателя имеет конечную длину в направлении бегущего магнитного поля, которое как бы возникает на одном и исчезает на другом конце сердечника индуктора. Эту особенность характеризуют как «разомкнутость» магнитной системы линейного двигателя. Она, в частности, вызывает несимметрию токов в обмотках индуктора и пульсирующую составляющую магнитного поля индуктора [21, 168]. Пульсацию магнитного поля можно уменьшить при помощи компенсирующих катушек или полностью устранить при помощи новой конструкции магнитной системы линейного двигателя [21, 126, 154]. Это явление называется первичным продольным краевым эффектом.
Отдельные участки реактивной шины последовательно входят в магнитное поле движущегося индуктора и затем выходят из этого поля. Процессы «входа-выхода» вызывают ряд новых, характерных и неустранимых явлений, совокупность которых называют вторичным продольным эффектом. Токи, наводимые в участках реактивной шины, определяются изменением магнитных потоков, сцепленных с контурами токов на этих участках. Изменение в потокосцеплениях вызывается как перемещением поля (скольжением) индуктора относительно шины со скоростью V=SV, так и процессами «входа» участков реактивной шины в магнитное поле индуктора и последующим их «выходом» из этого поля. Соответственно с этим токи в шине могут быть подразделены на токи скольжения, создающие тяговые усилия линейного двигателя, и вихревые токи, связанные с установлением и исчезновением магнитного поля в участках шины при их проходе через зазор индуктора.
Магнитные поля индуктора подразделяются на главное поле и на боковые и торцевые поля рассеяния. Последние являются пульсирующими полями. Явление вторичного краевого эффекта заключается в том, что в проводящем вторичном элементе не может сразу, мгновенно возникнуть магнитный поток. Во вторичном элементе возникает мгновенно электрическое поле, и токи, создаваемые этим полем, стремятся создать противопоток, в результате чего на входе резко падает индукция.
Аналогичная картина на выходе, только там токи во вторичном элементе стараются препятствовать уменьшению потока, и магнитное поле выносится за конец индуктора. Это явление тем ярче выражается, чем выше синхронная скорость.
Описанные краевые эффекты более или менее подробно анализированы в литературе [1, 6, 7, 21, 26, 31-33, 75, 76, 83, 97, 101, 120, 125, 129, 130, 141, 146, 159, 170-173]. Одновременно и в Японии [141], и в СССР, в Ленинградском политехническом институте и в ВЭлНИИ, были получены результаты, которые не объясняются ранее разработанной теорией вторичного продольного эффекта [204—206].
Лабораторный макет тягового линейного двигателя был разработан ВЭлНИИ и изготовлен на Новочеркасском электровозостроительном заводе. Все физические процессы в нем протекали, как в реактивном линейном двигателе, и было обеспечено удобство исследований. Он состоит из индуктора с двойным сердечником 1 (рис. 14), несущим обмотку 2 и установленным на раму 3 так, что зазор между сердечниками может регулироваться в пределах 20-50 мм. Функции реактивной шины в макете выполняет реактивный диск 4 из дюралюминия, насаженный на вал нагрузочной машины постоянного тока. Первый вариант сердечников имел среднюю длину 860 мм при ширине 120 мм. На сердечнике уложена шестиполюсная трехфазная обмотка.
Особенностью данного исполнения макета тягового линейного двигателя, отличающей его от аналогичных установок, является дугообразная форма сердечников индуктора. Этим обеспечивается соответствие траекторий бегущего магнитного поля индуктора и перемещений в нем элементов вращающегося реактивного диска, следствием чего является соответствие процессов макета линейного тягового двигателя данного исполнения таковым в реальном тяговом двигателе с поступательным движением элементов. Установка питается от машинного агрегата, чем обеспечивается синусоидальная форма кривых тока в обмотках линейного двигателя и снимаются побочные явления, связанные с, высшими гармоническими тока.

Рис. 14. Макет линейного двигателя.

По механическим параметрам макет тягового линейного двигателя может работать при линейных скоростях до 350 км/ч, но и по условиям питания эта скорость была ограничена 100 км/ч. Линейная скорость диска относится к середине ширины пакетов стали индуктора [204, 207].
При малых синхронных скоростях вторичного элемента вместо тормозных усилий появляются тяговые, при постепенном увеличении синхронной скорости тяговые усилия уменьшаются и переходят в тормозные (рис. 15) [205, 141].
Существуют также краевые поперечные эффекты, которые проявляются в поперечном направлении двигателя, так как ширина сердечника ограничена. Краевые поперечные эффекты существуют и во вращающихся машинах, но они менее значительны. Во-первых, во вращающемся двигателе ток проходит по проводникам, расположенным в роторе (за некоторым исключением), а не в общей массе ротора. В роторе асинхронного двигателя активный ток проходит по токопроводящим стержням, а обратный — по короткозамкнутым кольцам. Сплошной ротор линейного двигателя не позволяет отделить активные токи от обратных. Во-вторых, ширина ротора и статора во вращающемся двигателе одинакова. В линейном двигателе ротор может быть шире, чем статор, иметь ту же либо меньшую ширину, чем статор.
Обратные токи протекают и в тех зонах ротора, которые расположены за статором, если статор уже, чем ротор.
Если же в силу конструктивных причин статор шире, чем ротор, то обратные токи, естественно, проходят в частях ротора, находящихся в активной зоне статора. Поток возбуждения плохо используется, и это явление приводит к кажущемуся увеличению вторичного сопротивления. Этот эффект стремится увеличить пусковое усилие, но номинальный режим работы двигателя становится менее эффективным [175].

Рис. 15. Зависимость результирующей электромагнитной силы, вызванной процессами «входа-выхода», от индукции для различных синхронных скоростей движения
Явление описано и в зарубежной, и в отечественной литературе [8, 10, 11, 15, 68, 69, 71, 115].

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector