Графики характеристик асинхронного двигателя - Авто журнал
17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Графики характеристик асинхронного двигателя

Аналитический метод расчета рабочих характеристик асинхронных двигателей. График рабочих характеристик асинхронного двигателя

Аналитический метод расчета рабочих характеристик асинхронных двигателей

Рассмотренный графический метод расчета рабочих характеристик асинхронных двигателей с применением круговой диаграммы имеет существенный недостаток — необходимость построения этой диаграммы и неизбежную неточность как при по­строении, так и при ее последующем использовании, связанные с дополнительными построениями, измерениями отрезков и т. п. Аналитический метод расчета рабочих характеристик не преду­сматривает каких-либо графических изображений и измерений, а некоторое увеличение объема математических вычислений при условии применения простейшей вычислительной техники не вы­зывает каких-либо затруднений. Аналитический метод расчета основан на схеме замещения асинхронного двигателя (рис. 12.2, б). Исходными при этом явля­ются паспортные данные двигателя (Рном, U1HOM, n2ном) и результаты выполнения опытов холостого хода и короткого замыкания (см. § 14.2 и 14.3).

Расчет ведут в следующем порядке.

Определяют приведенное активное сопротивление ротора (Ом):

r2′ = rк – r1, (14.30)

а затем критическое скольжение:

sкр ≈ r2’/ xк (14.31)

и номинальное скольжение:

sном = (n1 — n2ном)/n1 (14.32)

Задавшись рядом значений скольжения (всего 6—7 значений, в том числе номинальное shom и критическое sкр), определяют не­обходимые для построения рабочих характеристик величины.

Эквивалентное активное сопротивление (Ом)

rэк = r1 +r2’/ s. (14.33)

Эквивалентное полное сопротивление рабочего контура схе­мы замещения (Ом)

Zэк = (14-34)

Коэффициент мощности рабочего контура схемы замещения

cos φ2 = rэк / zэк. (14.35)

Приведенный ток ротора, (А)

I/2 = U1 /zэк (14.36)

и его активная и реактивная составляющие (А)

I/2a = I/2 соs φ2; (14.37) I/2p = I/2 sin φ2. (14.38)

Активная и реактивная составляющие тока статора (А)

I1а = I0а + I/2а; (14-39)

I1p = I0p + I2p (14-40)

Здесь I0а = I0 соs φ0 — активная составляющая тока холостого хода; I0p = I0 sin φ0 — реактивная составляющая этого тока.

Ток в обмотке статора (А)

I1 = (14.41)

Коэффициент мощности двигателя

cos φ1 = I1a/ I1 (14.42)

Потребляемая двигателем мощность (Вт)

P1 = m1U1I1a (14.43)

Электрические потери статора Рэ1 определяют по (13.2), элек­тромагнитную мощность Рэм — по (13.6), электромагнитный мо­мент М — по (13.11), электрические потери в роторе Рэ2 — по (13.5), добавочные потери Рдоб — по (13.7) и (13.8).

Полезная мощность двигателя (Вт)

Р2 = Рэм – Рэ2 – Рмех – Рдоб, (14.44)

где Рмех — механические потери, Вт; их определяют из опыта хо­лостого хода (см. рис. 14.2).

Коэффициент полезного действия двигателя определяют по (13.10), частоту вращения ротора — по (10.2). Полезный момент (момент на валу) двигателя (Н м)

М2 = 9,55Р2/ n2. (14.45)

Результаты расчета сводят в таблицу (см. табл. 14.1), а затем строят рабочие характеристики двигателя (см. рис. 13.7).

Пример 14.1.Трехфазный асинхронный двигатель имеет паспортные дан­ные: Рном =3,0 кВт, Uном = 220/380 В, I1ном = 6,3 А, nном = 1430 об/мин. Активное сопротивление фазы обмотки статора при рабочей температуре r1 = 1,70 Ом. Ха­рактеристики х.х. двигателя приведены на рис. 14.2 (I0ном = 1,83 А, Рном= 300 Вт, Р/0ном= 283 Вт, Рмех = 200 Вт, соs φ0ном = 0,24, обмотка статора соединена звез­дой). Характеристики к.з. приведены на рис. 14.3 (Рк.ном = 418 Вт, Uк.ном = 59,5 В, Iк.ном = 6,3 А, cos φк.ном =0,372).

Требуется рассчитать данные и построить рабочие характеристики двигателя и определить перегрузочную его способность.

Решение. Активная и реактивная составляющие тока х.х.

I0a = I0 cos φ0ном = 1,83 • 0,24 = 0,44 А,

I0p = I0 sin φ0ном = 1,83 • 0,97 = 1,77 А.

Полное сопротивление кз. по (14.10)

zк = Uк.ном/ Iк.ном = 59,5/6,3 = 9,45 Ом,

его активная и реактивная составляющие по (14.11) и (14.12)

rк = zк соs φк.ном = 9,45 • 0,372 = 3,5 Ом,

xк = = =8,8 Ом.

Приведенное активное сопротивление ротора по (14.30)

r/2 = rк – r1 = 3,5 — 1,7 = 1,8 Ом.

Критическое скольжение по (14.31)

sкр = r/2/ xк = 1,8/ 8,8 = 0,20.

Номинальное скольжение по (14.32)

sном = (n1 — n2ном)/ n1 = (1500 — 1430)/ 1500 = 0,046.

Магнитные потери по (14.8)

Рм = Р/0 — Рмех = 283 — 200 = 83 Вт.

Задаемся следующими значениями скольжения: 0,01, 0,02, 0,03, 0,046, 0,06 и 0,20. Результаты расчета приведены в табл. 14.1. Рабочие характеристики двига­теля представлены на рис. 13.7.

Перегрузочная способность двигателя λ = Мmax/ Mном = 38,7/ 21,4 = 1,81.

1.Какие существуют методы получения данных для построения рабочих харак­теристик асинхронных двигателей?

2.Чем ограничивается применение метода непосредственной нагрузки?

3.Как определить величину механических и магнитных потерь двигателя по характеристикам х.х.?

• Пуск и регулирование частоты вращения трехфазных асинхронных двигателей

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Объяснить особенности рабочих характеристик асинхронного двигателя.

Ответ12: Рабочие характеристик асинхронного двигателя это зависимости n, M, сosφ, I1, P1 , КПД-η от полезной мощности на валу Р2. представлены на рис 6-12.

а) Зависимость η=f(P2)

КПД двигателя η= P2/ P1= P2/ ΔР+ P2

P1 –мощность электрической энергии, поступившая из сети в двигатель,

P2 –мощность, преобразованная в полезную механическую энергию,

ΔР= мощность всех потерь в двигателе: электрических и магнитных потерь в статоре, электрических потерь в роторе и механических потерь ( трение в подшипниках , трение о воздух) .Потери в обмотках изменяются как I2 . Т.о. по мере роста нагрузки ток двигателя растет, а потери растут быстрее. Поэтому в начале по мере роста нагрузки КПД растет быстро, а затем медленно и достигает максимума при 70-75% нагрузки. При дальнейшем увеличении нагрузки Р2 потери значительно возрастают и КПД уменьшается.

б) Зависимость М=f(P2)

По определению в статическом режиме Мэм=Мнагрузки поэтому М эм= P2/ ω2

где ω2= ω1 ·(1-S) угловая частота вращения ротора.

ω1- угловая частота вращения магнитного поля , S-скольжение.

Поэтому зависимость М=f(P2) линейная.

в) Зависимость сosφ =f(P2)

В АД имеет место два энергетических процесса:

а) Необратимый расход активной энергии Р1 и

б) Обратимый процесс периодического изменения запаса энергии магнитного поля, мерой которой является реактивная мощность Q1,

Соотношение между активной мощностью и реактивной мощностью оценивается коэффициентом мощности двигателя сosφ =Р1/ S, где

Читать еще:  Греется двигатель зил 131 причина

Коэффициент мощности двигателя зависит от нагрузки на его валу. При холостом ходе, энергия расходуется только на покрытие небольших электрических и магнитных потерь в статоре и незначительных механических потерь в подшипниках., Это означает, что активная мощность мала, а реактивная велика., поэтому сosφ мал. Обычно сosφхх =0,08÷0,15. С увеличением нагрузки активная мощность Р1 так же увеличивается , а реактивная Q1 изменяется незначительно. При нагрузке Р2 =Р2ном сosφ достигает максимума сosφmax=0,75÷0,95. При дальнейшем увеличении нагрузки из за увеличения потоков рассевания Q1 растет и сosφ уменьшается.

В виду массового применения АД в производстве, использование их с сosφ Р2крит двигатель останавливается .

д) Зависимость S =f(P2)

Зависимость скольжения S =f(P2) имеет вид (Рис 12б):

В режиме холостого хода скольжение

S = 0. С увеличением нагрузки скольжение увеличивается. При нагрузке Р2 =Р2ном скольжение номинальное sном, =1.5÷7%. При дальнейшем увеличении нагрузки P2

(область перегрузки) скольжение быстро возрастает и достигает критического значения Sкр. Дальнейшее увеличение нагрузки приводит к увеличению скольжения и неустойчивому режиму работы двигателя или к его остановке.

е) Зависимость I1=f(P2)

Зависимость тока статора I1 от нагрузки P2 имеет вид (Рис 12а):

Между током статора I1 и током ротора I2 существует трансформаторная связь

Ток статора согласно уравнению для МДЖС имеет вид: I1=I0 + I2

где I10 ток холостого хода. I10 не зависит от нагрузки ,

I2-тока ротора . I2 так же как и в трансформаторах зависит от нагрузки.

Поэтому зависимость I1 увеличивается с увеличением P2 .

В режиме холостого хода I1=I10. и составляет от 20 до 75% от номинального тока статора I1ном.

В момент пуска ток ротора I2 = I2пуск =(6÷8) I1ном.

Расчет и построение рабочих характеристик асинхронного двигателя

3 Расчет и построение рабочих характеристик

Расчет произведем для характеристик асинхронного двигателя при номинальной нагрузке.

3.1 Эквивалентное сопротивление рабочей ветви схемы, Ом:

3.2 Эквивалентное полное сопротивление рабочей ветви схемы, Ом:

Zэк=.

Zэк=.

3.3 Приведенное значение тока ротора, А:

3.4 Активную Р1 и реактивную Q1 мощности, потребляемые из сети, вычисляем по уравнениям баланса мощностей, составленным по Г-образной схеме замещения при неизменном токе I0ном.

Р1=;

Q1=.

Р1=;

Q1=.

3.5 Ток статора, А:

I1=.

I1=.

3.6 Электромагнитная мощность, Вт:

Рэм=3×0,0627×(60,4)2/0,018=38123 Вт=38,123 кВт.

3.7 Вращающий электромагнитный момент, развиваемый двигателем, Н×м:

3.8 Выходная мощность, Вт:

Р2=38123×(1-0,018)-444=36993 Вт=36,993 кВт.

3.9 КПД двигателя:

3.10 Частота вращения ротора, об/мин:

3.11 Момент нагрузки, Н×м:

Таблица III Рабочие характеристики асинхронного двигателя мощностью Рном=37 кВт

Снятие рабочих характеристик трехфазного асинхронного электродвигателя с короткозамкнутым ротором

лабораторная работа 3

Снятие рабочих характеристик трехфазного асинхронного электродвигателя с короткозамкнутым ротором

Цель работы. 1. Изучить устройство трехфазного асинхронного двигате­ля с короткозамкнутым ротором.

2. Испытать асинхронный двигатель с по­мощью электро-магнитного тормоза.

3. Построить по опытным данным рабочие характеристики асинхронного двигателя.

Общие теоретические положения.

Асинхронный двигатель трехфазного тока представляет собой электрическую машину, служащую для преобразо­вания электрической энергии трехфазного тока в механическую.

Двигатель имеет две основные части : неподвижную — статор

Статор состоит из чугунного, стального или алюминиевого корпуса, внутри которого находится полый цилиндр, собранный из тонких изолированных друг от друга листов электротехнической стали. На внутрен­ней поверхности цилиндра имеются пазы, в которых размещается трехфазная обмотка статора, состоящая из трех одинаковых частей, называемых фа­зами. Выводы начала и конца одной фазы сдвинуты в пространстве относи­тельно аналогичных выводов другой фазы иа 120°.

На корпусе двигателя имеется панель с зажимами, с помощью которых обмотка присоединяется к трехфазной сети. К каждому зажиму подключен соответствующий вывод обмотки. Для зажимов приняты следующие обозначе­ния: зажимы, к которым подключены начала обмоток, обозначают С1 — С3; зажимы, к которым подсоединены концы обмоток, — С4 — С6

Обмотки двигателей малой и средней мощности изготовляют на напряже­ния 380/220 и 220/127 В. Напряжение, указанное в числителе, соответствует соединению обмоток звездой, в знаменателе—треугольником. Таким образом, один и тот же двигатель при соответствующей схеме соединения его обмоток может быть включен в сеть на любое указанное в паспорте напряжение.

Ротор представляет собой цилиндр, собранный, так же как и сердечник статора, из отдельных листов электротехнической стали, надежно укреплен на валу машины и имеет в пазах, расположенных вблизи его поверхности, короткозамкнутую обмотку.

Подключим обмотку статора к сети трехфазного переменного тока (рис. 10.1).

Внутри статора возникает магнитное поле, вращающееся с часто­той

где f — частота токов в обмотке статора;

р— число пар полю­сов обмотки статора.

Магнитные линии поля пересекают обмотку неподвижно­го ротора и индуцируют в ней ЭДС. Под действием ЭДС в обмотке ротора про­текает ток. Ток ротора, взаимодействуя с вращающимся магнитным полем, создает вращающий момент, под действием которого ротор начинает вращать­ся в ту же сторону, что и поле с частотой

где s — скольжение, определяемое по формуле: s = (n 0 — n)/n 0

При работе электродвигателя без нагрузки (холостой ход) скольжение очень мало. С увеличением нагрузки на валу двигателя частота вращения ротора уменьшается, а скольжение увеличи­вается. Скольжение асинхронного двигателя в зависимости от нагрузки меня­ется незначительно (1—6 %). Чем больше мощность двигателя, тем меньше его скольжение. Частота вращения ротора может быть измерена с помощью тахо­метра. Для изменения направле­ния вращения (реверсирование) асинхронного двигателя следует поменять ме­стами два любых провода из трех, идущих к обмоткам статора двигателя.

Зависимость между вращающим моментом M и скольжением s называют механической характеристикой (рис. 10.2). В начальный момент пуска s =1 и п = 0, вращающий пусковой момент двигателя относительно невелик. При некотором скольжении, называемом критическим, вращающий момент двига­теля максимальный. В режиме холостого хода, когда двигатель не нагружен, а механическими потерями (на трение) можно пренебречь, s = С. Работе дви­гателя с номинальной нагрузкой соответствует точка A на механической ха-

Рис 10.1. Схема присоеди­нения трехфазного асинх­ронного двигателя с корот-козамкнутым ротором к пи­тающей сети

Рис. 10.2. График зависи­мости вращающего момен­та асинхронного двигателя от скольжения

Рис. 10.3. Характеристики асинхронного двигателя:

а — механическая; б — рабочие

Читать еще:  Что за двигатель rft

рактеристике. При скольжении S ном двигатель развивает номинальный мо­мент, значение которого (Н-м) вычисляют по формуле:

М ном = 9550 Р 2ном / n ном

где Р 2ном — номинальная мощность двигателя, кВт;

n ном — номинальная частота вращения ротора, мин -1

Свойства асинхронного двигателя определяют по его механической ха­рактеристике п = f (М) (рис. 10.3, а) и по рабочим характеристикам п = f (Р 2 ),

s = f(Рг), М = f (Р 2 ), I = f(Р 2 ), cos  = f (Р 2 ),  — f(Р 2 ) при напряжении U = const и частоте тока I = const (рис. 10.3, б), где М и Р — соответственно момент и мощность на валу двигателя.

Прямой пуск асинхронного двигателя с короткозамкнутым ротором мож­но производить включением рубильника (магнитного пускателя) и т.п. (см. рис. 10.1). При прямом пуске на двигатель подается полное напряжение сети. При таком способе пуска возникают большие пусковые токи, в 2—7 раз пре­вышающие номинальные токи двигателей. Однако в этом случае на валу дви­-

Рис. 10.4. Устройство электромагнитного (индукционного) тор­моза:

1 — электромагниты; 2 — стальной диск; 3 — груз; 4—шкала: 5 — стрелка; 6 — вал испытуемой машины

Рис. 10.5. Схема для исследования трехфазного асинхронного дви­гателя с короткозамкнутым ротором

гателя развивается начальный вращающий момент М п , составляющий 1,2— 2,2 номинального момента М ном , что достаточно для разгона большинства устройств, пускаемых без нагрузок.

Трехфазный асинхронный двигатель с короткозамкнутым ротором харак­теризуется такими номинальными величинами:

мощностью Р 2НОМ на валу,

линейным напряжением U ном ,

линейным током I ном .

типом соединения фаз ста­тора,

частотой переменного тока f ном ,

частотой вращения ротора n ном ,

коэф­фициентом мощности cos  ном

КПД  ном — которые приведены на табличке машины.

Для нагрузки электродвигателей широко применяют электромагнитные
(индукционные) тормозные устройства (рис. 10.4, где 1— электромагниты,
2 — стальной диск, 3 — груз, 4— шкала, 5 — стрелка, 6— вал испыту­
емой машины). При некотором угле поворота груза со стрелкой вращающий и
противодействующий моменты уравновешиваются и по заранее проградуиро-
ванной шкале в ньютон-метрах определяют вращающий момент, развиваемый
на валу электродвигателя.

Мощность Р 2 на валу (кВт) определяется по формуле: Р 2 = М  n / 9550

Коэффициент мощности вычисляют по формуле: cos  = Р 1 /  3  U  I

КПД определяют по формуле:  = Р 2 / Р 1,

где Р 1 — активная мощность, потребляемая двигателем электрической энергии из трехфазной сети;

U и I —линейные на­пряжения и ток.

Приборы и оборудование:

источники- питания (трехфазная сеть перемен­ного тока; сеть постоянного тока),

трехфазный асинхронный двигатель с ко­роткозамкнутым ротором,

амперметр и вольтметр электромагнитной системы,

двухэлементный ваттметр ферродинамической системы,

трехполюсный и двухполюсный автоматические выключатели,

Порядок выполнения работы.

Ознакомиться с приборами, аппаратурой и оборудованием, предназ-наченными для выполнения лабораторной работы, записать их технические характеристики.

Собрать электрическую схему для исследования асинхронного двига-­
теля (рис. 10.5) и представить ее для проверки преподавателю.

Произвести пуск двигателя без нагрузки на его валу (холостой ход).
Показания всех приборов записать в табл. 10.1

Постепенно нагружать двигатель с помощью электромагнитного тор­-
моза, для этого ступенями изменять ток в обмотках электромагнитов тормоза с помощью делителя напряжения R. Записать показания всех приборов в табл. 10.1 для 6—7 различных случаев возрастающей нагрузки.

5. Произвести необходимые расчеты, результаты записать в табл. 10.1.
Используя полученные результаты, построить в одной системе координат ра­бочие характеристики: п = f (Р 2 ), s = f(Рг), М = f (Р 2 ), I = f(Р 2 ), cos  = f (Р 2 ),  — f(Р 2 )

Составить отчет по результатам выполненной работы.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Рабочие характеристики асинхронного двигателя

Рабочие свойства асинхронного мотора представляют собой графически выраженные зависимости частоты вращения n2, КПД η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1 от полезной мощности Р2 при U1 = const f1 = const.

Высокоскоростная черта n2 = f(P2). Частота вращения ротора асинхронного мотора n2 = n1(1 — s).

Скольжение s = Pэ2/Pэм, т. е. скольжение асинхронного мотора, а как следует, и его частота вращения определяются отношением электронных утрат в роторе к электрической мощности. Пренебрегая электронными потерями в роторе в режиме холостого хода, можно принять Рэ2 = 0, а потому s ≈ 0 и n20 ≈ n1.

По мере роста нагрузки на валу асинхронного мотора отношение s = Pэ2/Pэм вырастает, достигая значений 0,01 — 0,08 при номинальной нагрузке. В согласовании с этим зависимость n2 = f(P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Но при увеличении активного сопротивления ротора мотора r2′ угол наклона этой кривой возрастает. В данном случае конфигурации частоты асинхронного мотора n2 при колебаниях нагрузки Р2 растут. Разъясняется это тем, что с повышением r2′ растут электронные утраты в роторе.

Рис. 1. Рабочие свойства асинхронного мотора мотора

Зависимость М2 =f(P2). Зависимость полезного момента на валу асинхронного мотора М2 от полезной мощности Р2 определяется выражением M2 = Р2/ ω2 = 60 P2/ (2πn2) = 9,55Р2/ n2,

где Р2 — нужная мощность, Вт; ω2 = 2πf 2/ 60 — угловая частота вращения ротора.

Из этого выражения следует, что если n2 = const, то график М2 =f2(Р2) представляет собой прямую линию. Но в асинхронном движке с повышением нагрузки Р2 частота вращения ротора миниатюризируется, а потому нужный момент на валу М2 с повышением нагрузки растет не сколько резвее нагрузки, а как следует, график М2 =f (P2) имеет криволинейный вид.

Зависимость cos φ1 = f (P2). В связи с тем что ток статора асинхронного мотора I1 имеет реактивную (индуктивную) составляющую, нужную для сотворения магнитного поля в статоре, коэффициент мощности асинхронных движков меньше единицы. Меньшее значение коэффициента мощности соответствует режиму холостого хода. Разъясняется это тем, что ток холостого хода электродвигателя I0 при хоть какой нагрузке остается фактически постоянным. Потому при малых нагрузках мотора ток статора невелик и в значимой части является реактивным (I1 ≈ I0). В итоге сдвиг по фазе тока статора относительно напряжения выходит значимым (φ1 ≈ φ0), только немногим меньше 90° (рис. 2).

Читать еще:  Греется инжекторный двигатель причины

Коэффициент мощности асинхронных движков в режиме холостого хода обычно не превосходит 0,2. При увеличении нагрузки на валу мотора вырастает активная составляющая тока I1 и коэффициент мощности растет, достигая большего значения (0,80 — 0,90) при нагрузке, близкой к номинальной. Предстоящее повышение нагрузки на валу мотора сопровождается уменьшением cos φ1 что разъясняется возрастанием индуктивного сопротивления ротора (x2s) за счет роста скольжения, а как следует, и частоты тока в роторе.

В целях увеличения коэффициента мощности асинхронных движков очень принципиально, чтоб движок работал всегда либо по последней мере значительную часть времени с нагрузкой, близкой к номинальной. Это можно обеспечить только при правильном выборе мощности мотора. Если же движок работает значительную часть времени недогруженным, то для увеличения cos φ1, целенаправлено подводимое к движку напряжение U1 уменьшить. К примеру, в движках, работающих при соединении обмотки статора треугольником, это можно сделать пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения в раз. При всем этом магнитный поток статора, а как следует, и намагничивающий ток уменьшаются приблизительно в раз. Не считая того, активная составляющая тока статора несколько возрастает. Все это содействует увеличению коэффициента мощности мотора.

На рис. 3 представлены графики зависимости cos φ1, асинхронного мотора от нагрузки при соединении обмоток статора звездой (кривая 1) и треугольником (кривая 2).

Рис. 3. Зависимость cos φ1,от нагрузки при соединении обмотки статора мотора звездой (1) и треугольником (2)

§ 13.4. Рабочие характеристики асинхронного двигателя

Рабочие характеристики асинхронного двигателя (рис. 13.7) представляют собой графически выраженные зависимости частоты

вращения n2, КПД η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1от полезной мощности Р2при U1= constf1= const.

Скоростная характеристикаn2=f(P2). Частота вращения ро­тора асинхронного двигателя

n2 = n1(1 — s).

Скольжение по (13.5)

s = Pэ2/ Pэм, (13.24)

т. е. скольжение дви­гателя, а следователь­но, и его частота вра­щения определяются отношением электри­ческих потерь в рото­ре к электромагнитной мощности Рэм. Пре­небрегая электричес­кими потерями в рото­ре в режиме холостого хода, можно принять Рэ2= 0, а поэтому s ≈ 0 и n20≈ n1. По мере увеличения нагрузки на валу

Рис. 13.7. Рабочие характеристики асинхрон­ного двигателя

двигателя отношение (13.24) растет, достигая значений 0,01—0,08 при но­минальной нагрузке. В соответствии с этим зависимость n2=f(P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Однако при увеличении активного сопротивления ротора r2‘ угол наклона этой кривой увеличивается. В этом случае изме­нения частоты вращения n2при колебаниях нагрузки Р2возраста­ют. Объясняется это тем, что с увеличением r2‘ возрастают элек­трические потери в роторе [см. (13.3)].

Зависимость М2=f(P2). Зависимость полезного момента на валу двигателя М2от полезной мощности Р2определяется выражением

M2 = Р2/ ω2 = 60 P2/ (2πn2) = 9,55Р2/ n2, (13.25)

где Р2— полезная мощность, Вт; ω2= 2πf 2/ 60 — угловая частота враще­ния ротора.

Из этого выражения следует, что если n2= const, то график М2=f22) представля­ет собой прямую линию. Но в асинхрон­ном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2с увеличением нагрузки возрастает не­ сколько быстрее нагрузки, а следовательно, график М2=f(P2) имеет криволинейный вид.

Рис. 13.8. Векторная диаграмма асинхронного

двигателя при небольшой нагрузке

Зависимость cos φ1 = f (P2).В связи с тем что ток статора I1имеет реактивную (индуктивную) составляющую, необходимую для созда­ния магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы. Наименьшее значение коэффициента мощности соответствует режиму х.х. Объясняется это тем, что ток х.х. I0при любой нагрузке остается практически неизменным. Поэтому при малых на­грузках двигателя ток статора невелик и в значительной части является реак­тивным (I1≈ I0). В результате сдвиг по фазе тока статора, относительно на­пряжения, получается значительным (φ1≈ φ0), лишь немногим меньше 90° (рис. 13.8). Коэффициент мощности асинхронных двигателей в режиме х.х. обычно не превышает 0,2. При увеличении нагрузки на валу двигателя растет активная составляющая тока I1и

Рис. 13.9. Зависимость cos φ1,от нагрузки при

соединении обмотки статора звездой (1) и треугольником (2)

коэффициент мощности возрастает, достигая наибольшего значения (0,80—0,90) при нагрузке, близкой к номинальной. Дальнейшее увелиичение нагрузки сопровождается уменьшением cos φ1что объясня­ется возрастанием индуктивного сопротивления ротора (x2s) за счет увеличения скольжения, а следовательно, и частоты тока в роторе. В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или по крайней мере значительную часть времени с нагрузкой, близкой к номиналь­ной. Это можно обеспечить лишь при правильном выборе мощности двигателя. Если же двигатель работает значительную часть времени недогруженным, то для повышения cos φ1, целесообразно подводимое к двигателю напряжение U1уменьшить. Например, в двигателях, работающих при соединении обмотки статора треугольником, это мож­но сделать пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения враз. При этом магнитный поток статора, а следовательно, и намагничивающий ток уменьшаются примерно враз. Кроме того, активная составляющая тока статора несколько увеличивается. Все это способствует повышению коэффи­циента мощности двигателя. На рис. 13.9

представлены графики зависимости cos φ1, асинхронного двигателя от нагрузки при соединении обмоток статора звездой (кривая 1) и треугольником (кривая 2).

22. Пуск асинхронного двигателя с фазным ротором. Регулирование частоты вращения асинхронных двигателей. Асинхронный преобразователь частоты.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию