1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

График характеристики двигателя независимого возбуждения

Большая Энциклопедия Нефти и Газа

Механическая характеристика — двигатель — постоянный ток

Механическая характеристика двигателя постоянного тока с параллельным возбуждением приведена на рис. 15.4. Запуск двигателя осуществляется пусковым реостатом /, который имеет несколько секций и позволяет изменять сопротивление ступенчато. [2]

Механические характеристики двигателя постоянного тока с независимым возбуждением при различных значениях напряжения на якоре и потока возбуждения ( и соответственно тока возбуждения) показаны на рис. 27, а. Характеристики двигателя при других условиях называют искусственными. Частота вращения двигателя вниз от номинальной регулируется путем снижения напряжения на якоре ( первая зона регулирования, кривые 2, 3, 4), вверх от номинальной — путем регулирования тока и потока возбуждения. [3]

Механические характеристики двигателя постоянного тока независимого возбуждения , управляемого тиристор-ным выпрямителем, напоминают характеристики в системе Г — Д ( рис. 4.13), однако они отличаются рядом особенностей. [5]

Рассмотрим механические характеристики двигателей постоянного тока в зависимости от способа возбуждения. [6]

Какие механические характеристики двигателей постоянного тока называют искусственными. [7]

Почему механические характеристики двигателя постоянного тока независимого и параллельного возбуждения прямолинейны, а последовательного возбуждения — криволинейны. [8]

Особенностью механической характеристики двигателей постоянного тока с последовательным возбуждением является нижний предел допустимой нагрузки. Этому соответствует нагрузка около 10 % номинального момента, ниже которой двигатель не должен быть нагружен по условиям его механической прочности. Ограничение скорости может диктоваться и конструкцией самой рабочей машины или технологическими особенностями ее использования. Это требование в некоторых случаях заставляет отказываться от применения двигателей с последовательным возбуждением. [10]

Построить механическую характеристику двигателя постоянного тока с параллельным возбуждением, для которого известны следующие каталожные данные: Рн 5 8 кет; пн 800 об / мин; UH 220 в; 1 34 а; гя 0 22 ом. [11]

На графике изображена механическая характеристика двигателя постоянного тока . Какая величина должна быть отложена по оси ординат. [12]

В отличие от механических характеристик двигателя постоянного тока с независимым возбуждением, механические характеристики асинхронного двухфазного двигателя непрямолинейны. Однако в области невысоких скоростей ( примерно до 55 % синхронной скорости), являющейся рабочей областью для таких двигателей, механические характеристики достаточно точно аппроксимируются отрезками прямых. [13]

На рис. 3.9.3.4 представлены механические характеристики двигателя постоянного тока при двухзонном регулировании скорости. При регулировании потоком возбуждения с увеличением скорости жесткость механических характеристик уменьшается. Следует отметить, что в замкнутых системах регулирования скорости вид механических характеристик можно формировать в зависимости от поставленной задачи. При этом в некотором диапазоне изменения момента нагрузки можно создать практически абсолютно жесткую характеристику, а при определенном моменте практически абсолютно мягкую. [15]

§5.6. Двигатели постоянного тока. Основные характеристики

Двигатели независимого и параллельного возбуждения.
Схема включения двигателя независимого возбуждения показана на рис. 5.19.


Рис. 5.19.

В цепь якоря может быть включено добавочное сопротивление Rд, например пусковой реостат. Для регулирования тока возбуждения в цепь обмотки возбуждения может быть включен регулировочный реостат Rр. У двигателя параллельного возбуждения обмотки якоря и возбуждения подключены к одному источнику питания, и напряжение на них одинаковое. Следовательно, двигатель параллельного возбуждения можно рассматривать как двигатель независимого возбуждения при Uя= Uв.

Механические характеристики.
Механические характеристики двигателей принято подразделять на естественные и искусственные. Естественная характеристика соответствует номинальному напряжению питания и отсутствию добавочных сопротивлений в цепях обмоток двигателя. Если хотя бы одно из перечисленных условий не выполняется, характеристика называется искусственной.
Уравнения электромеханической &#969=f(I я) и механической &#969=f(M эм.) характеристик могут быть найдены из уравнения равновесия ЭДС и напряжений для якорной цепи двигателя, записанного на основании второго закона Кирхгофа:

где R я – активное сопротивление якоря.
Преобразуя (5.35) с учетом (5.6), получим уравнение электромеханической характеристики

В соответствии с (5.10) ток якоря I я=M эм./kФ и выражение (5.36) преобразуется в уравнение механической характеристики:

Читать еще:  Kia sorento неисправность двигателя

Это уравнение можно представить в виде ω= ω о.ид.— Δ ω, где

ω о.ид — угловая скорость идеального холостого хода ( при Iя=0 и, соответственно, Мэм.=0 ); Δ ω= Мэм. [(Rя+Rд)/(kФ) 2 ]– уменьшение угловой скорости, обусловленное нагрузкой на валу двигателя и пропорциональное сопротивлению якорной цепи.
Семейство механических характеристик при номинальном напряжении на якоре и потоке возбуждения и различных добавочных сопротивлениях в цепи якоря изображено на рис. 5.20,а.


Рис.5.20

Механические характеристики двигателей принято оценивать по трем показателям: устойчивости, жесткости и линейности.
Естественная механическая характеристика, соответствующая (5.37) при Rд=0, изображена прямой линией 1. Механическая характеристика линейная; отклонение от линейного закона может быть вызвано реакцией якоря, приводящей к изменению потока Ф. Эта характеристика жесткая, так как при изменении момента нагрузки и соответственно скорости поток возбуждения не изменяется. Жесткость характеристики уменьшается при введении добавочного сопротивления в цепь якоря (прямые линии 2 и 3 – искусственные реостатные характеристики). Характеристики устойчивые, так как dω/dMэм. Мст. Если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. Ввиду того, что ротор обладает моментом инерции, разгоняется он не мгновенно – нарастание скорости происходит по закону, близкому к экспоненте.
Пуск двигателя постоянного тока осложняется тем, что при ω=0 ЭДС Eя=0 и пусковой ток якоря Iяп= Uя/ Rя может в 10 – 20 раз превышать номинальный ток, что опасно как для двигателя (усиление искрения, динамические перегрузки), так и для источника питания. Поэтому важнейшими показателями пускового режима являются кратность пускового тока Kiп= Iп/ Iном и кратность пускового момента Кмп= Мп/ Мном. При пуске необходимо обеспечить требуемую кратность пускового момента при возможно меньшей кратности пускового тока.
Прямой пуск применяют обычно при кратности пускового тока K iп?6. При большем значении Kiп применяют способы пуска, обеспечивающие снижение тока Iяп либо за счет подачи пониженного напряжения на обмотку якоря, либо за счет введения добавочного сопротивления в цепь якоря. Первый способ применяется в основном при работе двигателей в системах автоматического регулирования с якорным способом управления. Второй способ, называемый реостатным, распространен наиболее широко в нерегулируемом приводе. Сопротивление пускового реостата Rп= Rд (см. рис. 5.19) выбирают таким, чтобы ограничить Iяп до (1,4 – 1,8) Iя.ном у двигателей средней мощности и до (2,0 – 2,5) Iя.ном у двигателей малой мощности. По мере разгона якоря ток якоря уменьшается и пусковой реостат постепенно выводится.

Реверсирование.
Реверсирование двигателя осуществляется либо изменением полярности напряжения на обмотке якоря, либо на обмотке возбуждения. В обоих случаях изменяется знак электромагнитного момента двигателя Мэм и соответственно направление вращения ротора.

Торможение.
У двигателей независимого и параллельного возбуждения возможны три тормозных режима: рекуперативное торможение, торможение противовключением и динамическое. При анализе тормозных режимов необходимо строить механические характеристики машины во всех четырех квадрантах плоскости Мэм, ω. Для построения механических характеристик можно пользоваться одним и тем же уравнением (5.37) с учетом знака Мэм в различных режимах работы машины.
Рекуперативное торможение, или генераторное торможение с отдачей энергии в сеть, может быть осуществлено при ω>ω о.ид. В этом случае ЭДС якоря Eя > Uя (см. (5.6) и (5.38)), ток якоря меняет направление, машина переходит в генераторный режим и электромагнитный момент становится тормозным. Механической характеристикой в режиме рекуперативного торможения является продолжение механической характеристики двигателя во II квадранте (ω>0, Mэм 2 . Механические характеристики тормозного режима расположены во II квадранте плоскости Мэм,ω (рис. 5.22, б, Rд2>Rд3).
В момент переключения двигатель переходит из точки А естественной характеристики двигательного режима 1 в точку В характеристики тормозного режима 2, момент Мэм меняет знак и начинается динамическое торможение. Угловая скорость уменьшается, но при этом довольно резко уменьшается и тормозной момент (переход из точки В в С). С целью увеличения тормозного момента производится уменьшение добавочного сопротивления Rд (переход из точки С в точку D). Торможение происходит до нулевой скорости.

Читать еще:  Что такое охлаждающая жидкость двигателя

Двигатели последовательного и смешанного возбуждения.
У двигателя последовательного возбуждения (рис. 5.23,а) ток якоря протекает по обмотке возбуждения (Iв= Iя) и это определенным образом сказывается на основных характеристиках двигателя. При отсутствии насыщения магнитопровода можно принять, что

где Kф – коэффициент пропорциональности.
С учетом (5.40) уравнения (5.10) и (5.37) принимают вид

где Rв – сопротивление обмотки возбуждения.
Механическая характеристика (рис. 5.23, б пунктирная линия) мягкая, имеет гиперболическую форму и обеспечивает устойчивую работу двигателя. Мягкость характеристики объясняется тем, что с увеличением момента нагрузки и соответственно уменьшением скорости растут ток и поток возбуждения. При больших нагрузках начинает сказываться насыщение магнитопровода и характеристика отличается от расчетной (сплошная линия). Двигатель последовательного возбуждения нельзя пускать без нагрузки на валу, так как при Мэм → 0, угловая скорость ω → ∞.
Квадратичная зависимость момента от тока позволяет при одинаковой кратности пускового тока получать у двигателя последовательного возбуждения больший пусковой момент, чем у двигателя независимого или параллельного возбуждения.
Пуск, реверсирование, торможение и регулирование угловой скорости двигателей последовательного возбуждения осуществляется теми же способами, что и у двигателей независимого и параллельного возбуждения с учетом специфики включения обмоток.


Рис.5.23

Двигатели смешанного возбуждения по своим характеристикам занимают промежуточное положение между двигателями независимого и последовательного возбуждения. Конкретный вид характеристик зависит от того, согласно или встречно(по потоку) включены между собой обмотки возбуждения.

Схема включения и статические характеристики двигателей постоянного тока с независимым возбуждением, работающих в электроприводах

Статические характеристики электроприводов зависят от технологического процесса, выполняемого производственным механизмом, а уже по статическим характеристикам выбирают тип электродвигателя, который необходим для выполнения технологических процессов данного производственного механизма .

Статические характеристики зависят от типа двигателя, а у двигателей постоянного тока – от способа возбуждения.

Схема включения двигателя постоянного тока с независимым возбуждением.

Для того чтобы двигатель привести во вращение на обмотку возбуждения надо подать напряжение, по обмотке возбуждения потечет ток iδ и в машине создастся основной магнитный поток Фδ. Затем на обмотку якоря нужно подать напряжение, по обмотке якоря потечет ток Iа и в якоре возникнет ЭДС Eа. На валу двигателя возникнет момент M и вращаться он будет со скоростью ω. Собственное сопротивление двигателя rа состоит из сопротивления обмотки якоря rоя,сопротивления дополнительных полюсов rдп, сопротивления компенсационной обмотки для машин мощностью больше 7 кВт и сопротивления в щеточном аппарате.

Вообще и якорь и обмотка возбуждения обладают индуктивным сопротивлением, но оно настолько мало, что обычно не учитывается при расчетах.

Связь между скоростью вращения и током якоря выражается зависимостью (1) и называется уравнением электромеханической характеристики двигателя постоянного тока.

Зависимость (2) называется уравнением механической характеристики двигателя постоянного тока с независимым возбуждением.

Как видно из уравнений (1) и (2) и электромеханическая и механическая характеристики представляют собой линейные зависимости между скоростью и током, скоростью и моментом.

Электромеханическая и механическая характеристики двигателя постоянного тока с независимым возбуждением.

Электромеханическая и механическая характеристики имеют одинаковый вид в разном масштабе.

Уравнение механической характеристики:

Δω называется перепадом скорости относительно скорости идеального холостого хода под действием нагрузки.

Характеристики 1 и 2 отличаются только полярностью на якоре двигателя. Характеристика 3 может быть получена по следующией схеме:

Читать еще:  402 двигатель уаз какое сцепление подходит

Схема двигателя постоянного тока с независимым возбуждением для получения характеристики динамического (реостатного) торможения.

3 – характеристика реостатного торможения.

Если напряжение равно нулю, то ω = -Δω.

ω = -[(M·Rа) / (CM·Фδ) 2 ] – уравнение 3-й характеристики.

Двигатель постоянного тока независимого возбуждения (ДПТ НВ)

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

где: n — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением Rдоб), то механиче­ские характеристики называют искусственными .

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления Rдоб, называют также реостатными (графики 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M). При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора Rдоб частота вращения уменьшается. Сопротивления резистора Rдоб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

где U — напряжение питания цепи якоря двигателя, В; Iя — ток якоря, соответствующий заданной нагрузке двигателя, А; n — требуемая частота вращения, об/мин; n — частота вращения холостого хода, об/мин.

Частота вращения холостого хода n представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную nном на столько, на сколько номинальное напряжение Uном подводимое к цепи якоря, превышает ЭДС якоря Ея ном при номинальной нагрузки двигателя.

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф. При уменьшении Ф (при возрастании сопротивления резистора rpeг) увеличивается частота вращения холостого хода двигателя n и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных Rдоб и Rрег), то меняется n, a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U, подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

Используемая литература: — Кацман М.М. Справочник по электрическим машинам

Ссылка на основную публикацию
Adblock
detector