Электрический двигатель постоянного тока как работает - Авто журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический двигатель постоянного тока как работает

Принцип действия электродвигателя

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями. Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла. Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.

Принцип работы электродвигателя — основные функциональные элементы

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.

Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа. Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.

Принцип работы электродвигателя — разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%. Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом, они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ. К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

Электрический двигатель постоянного тока как работает

Двигатель постоянного тока нашел широкое применение в различных областях деятельности человека. Начиная от использования тягового привода, применяемого в трамваях и троллейбусах , заканчивая приводом прокатных станов и подъемных механизмов, где требуется поддержание высокой точности скорости вращения.

Основные положительные особенности , которые отличают ДПТ от асинхронного двигателя:

— гибкие пусковые и регулировочные характеристики;
— двухзонное регулирование, которое позволяет достигать скорости вращения более 3000 об/мин.
— сложность в изготовлении и высокая стоимость;
— в процессе работы необходимо постоянное обслуживание, так как коллектор и токосъемные щетки имеют небольшой ресурс работы.

Двигатель постоянного тока применяют только тогда, когда применение двигателя переменного тока невозможно или крайне нецелесообразно. В среднем, на каждые 70 двигателей переменного тока приходится всего лишь 1 ДПТ.

Конструкция ДПТ

Двигатель постоянного тока состоит из:

— индуктора (статора);
— якоря (ротора);
— коллектора;
— токосъемных щеток;
— конструктивных элементов.

Якорь и индуктор разделены между собой воздушным зазором. Индуктор представляет из себя станину, которая служит для того, чтобы закрепить основные и добавочные полюса магнитной системы двигателя. На основных полюсах располагаются обмотки возбуждения, а на добавочных – специальные обмотки, которые способствуют улучшению коммутации.

Коллектор подводит постоянный ток к рабочей обмотке, которая уложена в пазы ротора. Коллектор имеет вид цилиндра и состоит из пластин, изолированных друг от друга, он насажен на вал двигателя. Щетки служат для съема тока с коллектора, они крепятся в щеткодержателях для обеспечения правильного положения и надежного нажатия на поверхность коллектора.

Читать еще:  Бензонасос в инжекторном двигателе схема

Рисунок 1 – Конструкция двигателя постоянного тока

Двигатели постоянного тока классифицируют по магнитной системе статора:

2) ДПТ с электромагнитами :

— ДПТ с независимым возбуждением;
— ДПТ с последовательным возбуждением;
— ДПТ с параллельным возбуждением;
— ДПТ со смешанным возбуждением.

Рисунок 2 – Схемы подключения двигателя постоянного тока

Схема подключения обмоток статора существенно влияет на электрические и тяговые характеристики привода.

Пуск двигателя постоянного тока

Пуск двигателя постоянного тока производят с помощью пусковых реостатов, которые представляют собой активные сопротивления, подключенные к цепи якоря. Выполняют реостатный пуск по двум причинам:

— при необходимости плавного разгона электродвигателя;
— в начальный момент времени, пусковой ток Iп = U / Rя очень большой, что вызывает перегрев обмотки якоря (которая имеет малое сопротивление).

Рисунок 3 – Реостатный пуск двигателя с 3 ступенями

В начале запуска к цепи ротора подключаются все сопротивления, и по мере увеличения скорости они ступенчато выводятся.

Регулирование скорости вращения

Частота вращения двигателя постоянного тока выражается формулой:

Это выражение так же называется электромеханической характеристикой ДПТ, в которой:

U – питающее напряжение;
Iя – ток в якорной обмотке;
Rя – сопротивление якорной цепи;
k – конструктивный коэффициент двигателя;
Ф – магнитный поток двигателя.

Формула момента двигателя:

Подставив в формулу электромеханической характеристики, получим:

Таким образом, исходя из приведенных формул, сделаем вывод, что скорость вращения ДПТ можно регулировать, изменяя сопротивление якоря, питающее напряжение и магнитный поток.

ЭЛЕКТРОДВИГАТЕЛЬ

Если между полюсами постоянного магнита поместить свободно подвешенную проволочную петлю и пропустить через нее электрический ток, то петля тотчас же отклонится в сторону, стремясь выйти из магнитного поля. На этом явлении и основано действие всех электрических двигателей. Электродвигатель состоит из двух основных частей: статора и ротора. Статор — неподвижная часть, служит магнито- проводом, внутри него создается магнитное поле. Ротор — вращающаяся (подвижная) часть, несет на себе витки провода, по которому протекает электрический ток. Если двигатель работает от сети переменного тока, то он называется двигателем переменного тока. Двигатели, работающие от источника постоянного тока, называются двигателями п о- стоянного тока.

Первыми электродвигателями были двигатели постоянного тока (объясняется это тем, что первыми были изобретены источники постоянного тока — гальванические элементы и батареи). В 1838 г. русский ученый Б. С. Якоби построил первый пригодный для практических целей электродвигатель постоянного тока, который использовался для привода гребного вала лодки. К 70-м гг. XIX в. электродвигатель был уже настолько усовершенствован, что в таком виде сохранился до наших дней. Вначале в электродвигателе использовались постоянные магниты; затем стали применяться электромагниты, что было существенным шагом вперед, так как сразу увеличилась мощность электродвигателей. Устроен электрический двигатель постоянного тока следующим образом. Если к обмотке электромагнита подвести электрический ток, то между его полюсами возникает магнитное поле. При этом виток провода, размещенный на роторе, к которому ток подводится через коллектор с помощью угольных пластин (называемых щетками), начинает вращаться, увлекая за собой ротор. Электродвигатели постоянного тока выпускаются мощностью от долей ватта (Вт) до сотен киловатт (кВт), на напряжение от

Принцип действия электродвигателя. Без тока замкнутый виток в магнитном поле непо движен (а); если через виток пропустить постоянный или переменный ток с помощью

единиц вольт (В) до сотен вольт. Важнейшая особенность электродвигателей постоянного тока — возможность легко регулировать в широких пределах частоту вращения ротора, изменяя силу тока в его обмотках. Микроэлектродвигатели постоянного тока широко применяются в системах автоматического регулирования, в электробритвах, кофемолках, любительских кинопроекционных аппаратах и других приборах бытового назначения. Мощные электродвигатели используются главным образом для привода прокатных станов, подъемных кранов, а также в качестве двигателей на электрофицированном транспорте. Электродвигатели постоянного тока были созданы ранее электродвигателей переменного тока, но утратили свое значение как основной тип двигателя после изобретения в 1889 г. русским инженером М. О. Доливо-Добровольским системы трехфазного тока и создания первых в мире трехфазных двигателей переменного тока. Так же как и двигатели постоянного тока, двигатели переменного тока состоят из двух основных частей: статора и ротора. Отличительная особенность — отсутствие коллектора, ток в обмотки ротора подаётся через контактные кольца. В некоторых двигателях переменного тока обмотки ротора вообще не имеют выводов для подключения к источнику тока, а замыкаются между собой. Такие обмотки внешне напоминают колесо, устанавливаемое в беличьих клетках. Потому и ротор такого типа получил название беличьего колеса.

Читать еще:  Двигатель m43 e36 характеристики

Двигатели переменного тока бывают синхронные и асинхронные. Синхронные дви: гатели называются так потому, что частота вращения ротора жестко связана с частотой тока в питающей сети, или, иными словами, частота вращения магнитного поля, создаваемого обмотками статора, строго согласована (синхронна) с частотой вращения ротора. В асинхронных электродвигателях частота вращения ротора отстает от частоты вращения магнитного поля статора, т. е. ротор вращается асинхронно по отношению к магнитному полю статора.

Из-за сложности конструкции и недостатков эксплуатационных характеристик синхронные электродвигатели применяются редко. Наибольшее распространение получили асинхронные двигатели; они просты в производстве и надежны в эксплуатации. Конструкция, мощность и размеры асинхронных двигателей зависят от их назначения и условий работы. Например, обычные двигатели с воздушным охлаждением применяются в металлообрабатывающих станках, в электрофуганках, для привода циркулярных пил, в лифтах, электропроигрывателях и т. д.; двигатели в герметичном корпусе и маслонапол- ненные — в электробурах; взрывобезопас- ные — для работы в шахтах и взрывоопасных помещениях; шаговые — в следящих системах, устройствах автоматики и телемеханики.

Мощность асинхронных электродвигателей колеблется от нескольких ватт до десятков миллионов ватт; масса — от сотен граммов до десятков тонн; напряжение питающей сети — от десятков вольт до нескольких киловольт. Все большее внимание уделяется так называемому линейному электродвигателю — двигателю электромагнитного транспорта (см. рис). Чтобы лучше понять его устройство и принцип действия, сравним его с устройством и принципом действия обычного электродвигателя.

У обычного электродвигателя переменного тока статор представляет собой стальное кольцо с обмоткой. В линейном двигателе кольцо как бы разрезано и распрямлено. При этом статорные обмотки уложены на плоскости вдоль всего пути, по которому движется транспорт. Ротором такого двигателя служит алюминиевый брус, уложенный посредине между обмотками тоже вдоль всего пути. Принцип работы линейного двигателя, по существу, тот же, что и у обычного электрического двигателя переменного тока: электрический ток через 3 контактных провода поступает в статор, вдоль проводников бежит магнитная волна, а в роторе-полосе наводятся вихревые токи, возникают электромагнитные силы. Они направлены вдоль полотна и приводят вагон, установленный на таком линейном двигателе, в движение. Вагон набирает скорость, движется с ускорением до тех пор, пока скорости передвижения вагона и бегущего магнитного поля не сравняются. Таким образом, электрическая энергия непосредствен но преобразуется в поступательное движение вагона. На этом принципе основана работа транспорта на магнитной подвеске.

Но чтобы вагон начал перемещаться вдоль линейного двигателя, одних электромагнитных сил, создаваемых им, явно недостаточно. Barot просто не сдвинется с места. Иключить трение помогают установленные с обеих сторон путь 2 рельса — 2 стальные полосы, которые в сечении похожи на букву П. На вагоне как раз под стальными полосами расположены мощные электромагниты. Они-то и удерживают вагоь на весу.

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи. Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач. Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Читать еще:  Асинхронный двигатель 10000 оборотов

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию