Двигатели внутреннего сгорания чертежи схемы
Как двигатель Рудольфа Дизеля изменил мир
Автор фото, Shutterstock
Инженер Рудольф Дизель погиб при загадочных обстоятельств прежде, чем успел разбогатеть на своем гениальном изобретении.
В 10 часов вечера 29 сентября 1913 года Рудольф Дизель отправился в свою каюту на пароходе «Дрезден», шедшем из бельгийского Антверпена через Ла-Манш в Лондон. Его пижама была разложена на кровати, но он так в нее и не переоделся.
Изобретатель двигателя, названного его именем, размышлял о своих больших долгах и процентах по ним, которые он уже не мог выплачивать. В его дневнике этот день — 29 сентября — был помечен зловещим крестом: «X».
- Почему в Европе разлюбили дизель?
- «Шоколадный дизель» до Африки довезет
- Клинтон за чистый дизель
Перед тем, как отправиться на пароход, 55-летний Дизель собрал все наличные деньги и сложил их в сумку вместе с документами, из которых было ясно, насколько отчаянным оказалось его финансовое положение. Он отдал сумку ничего не подозревавшей жене и велел открыть ее не раньше, чем через неделю.
Дизель вышел на палубу. Снял плащ и шляпу. Аккуратно сложил их на палубе. Посмотрел на воду. И прыгнул за борт.
Или не прыгнул? Любители конспирологии считают, что ему «помогли».
Но кто мог быть заинтересован в смерти бедного изобретателя? Есть две версии.
Для того, чтобы понять контекст, вернемся на тридцать лет назад, в 1872 год. Паровые двигатели уже широко применяются в промышленности, по железным дорогам бегают все более многочисленные паровозы, но в городах весь транспорт — по-прежнему на гужевой тяге.
Спрос на замену лошади
Осенью того года эпизоотия конского гриппа парализовала города Соединенных Штатов. Не на чем было подвозить товары в лавки, не на чем вывозить мусор.
В полумиллионном городе в те времена могло быть около ста тысяч лошадей. Каждая из них ежедневно орошала улицы 15 килограммами навоза и 4 литрами мочи.
Города остро нуждались в недорогом, надежном и небольшом двигателе, который заменил бы конную тягу.
Одним из кандидатов на эту роль был паровой двигатель: автомобили на паровой тяге конструировались один за другим.
Вторым был двигатель внутреннего сгорания. Первые его модели работали на газе, на бензине, даже на порохе. Но в семидесятых годах XIX века, когда Рудольф Дизель был студентом, оба этих типа двигателей были ужасно неэффективны, с КПД всего лишь около 10%.
Поворотным пунктом в жизни молодого Дизеля стала лекция о термодинамике в Королевском Баварском политехническом институте в Мюнхене, на которой он услышал, что двигатель внутреннего сгорания, преобразующий всю энергию тепла в полезную работу, теоретически возможен.
Автор фото, Alamy
Схема-рисунок двигателя внутреннего сгорания, изобретенного Рудольфом Дизелем в 1887 году
Дизель взялся за претворение теории в жизнь. И потерпел неудачу. КПД его первого двигателя составлял всего лишь 25%. КПД лучших из современных дизелей — более 50%.
Но даже 25% — это было в два с лишним раза лучше, чем у конкурентов.
В бензиновых двигателях внутреннего сгорания в цилиндре сжимается смесь воздуха и паров бензина, которая затем поджигается электрической искрой. В двигателе Дизеля сжимается только воздух, при этом его температура повышается настолько, что ее достаточно для воспламенения впрыскиваемого топлива.
При этом в дизеле чем сильнее сжатие, тем меньше нужно топлива, тогда как в двигателе с зажиганием слишком сильное сжатие приводит к сбою в работе.
Ненадежные моторы
Все автомобилисты знают о главном свойстве машин с дизельным мотором: они обычно дороже стоят, зато дешевле в эксплуатации.
К несчастью для Рудольфа Дизеля, его первые модели при всем их высоком КПД отличались ненадежностью. Недовольные покупатели завалили его требованиями о возврате денег. Это и загнало изобретателя в финансовую яму, из которой он не смог выбраться.
Но он продолжал работать над своим двигателем и постепенно совершенствовал его.
Выявились другие преимущества двигателя Дизеля. Он может работать на более тяжелом, чем бензин, топливе — солярке, или, как сейчас его чаще называют, дизтопливе. Оно дешевле бензина и к тому же менее интенсивно испаряется, поэтому менее взрывоопасно.
В силу этого дизели стали особенно популярны у военных. Уже в 1904 году двигатели Рудольфа Дизеля были поставлены на французских подводных лодках.
Автор фото, Getty Images
Машины с дизельным двигателем дороже при покупке, но дешевле в эксплуатации
Здесь лежат корни первой конспирологической версии смерти Рудольфа Дизеля.
Европа, 1913 год, большая война все ближе и все неотвратимее — а тут немец, изобретатель нового двигателя, преследуемый финансовыми проблемами, отправляется в Британию. Одна газета так и написала в заголовке: «Изобретателя сбросили в море, чтобы предотвратить продажу патентов британскому правительству».
Коммерческий потенциал изобретения Дизеля, однако, стал раскрываться только после Первой мировой. Первые дизельные грузовики появились в 1920-х годах, железнодорожные локомотивы — в 1930-х. К 1939 году уже четверть морских грузов в мире перевозили суда с дизельными установками.
После Второй мировой войны были созданы еще более мощные дизельные моторы, которые позволили строить суда все большего водоизмещения и все более экономно перевозить грузы. На топливо приходится около 70% себестоимости морских перевозок.
Пар или дизель?
Чешско-канадский ученый Вацлав Смил, например, считает, что если бы международная торговля оставалась привязана к паровым двигателям и не перешла на дизель, то она росла бы гораздо медленнее.
Британско-американский экономист Брайан Артур так не считает. Он называет переход на двигатели внутреннего сгорания в течение последнего века проявлением «попадания в колею»: уже сделанные инвестиции и построенная инфраструктура заставляют человечество действовать в определенном коридоре, а если б с самого начала был выбран другой путь, то и на нем нашлись бы эффективные решения.
По мнению Брайана Артура, еще в 1914 году у паровых автомобильных двигателей перспективы были не хуже, чем у двигателей внутреннего сгорания — но растущее влияние нефтяной промышленности привело к тому, что в развитие ДВС стали вкладывать гораздо больше денег.
Если бы инвестиций было поровну, то, предполагает доктор Артур, мы бы сейчас вполне могли ездить на машинах с паровыми двигателями какого-нибудь очередного поколения.
Автор фото, Getty Images
Экспертименты Дизеля с арахисовым маслом предвосхитили современное развитие производства биотоплива
А если бы мировая экономика прислушалась к Рудольфу Дизелю, то, может быть, сейчас двигатели работали бы на арахисе.
Имя Дизеля сейчас ассоциируется с топливом из нефтепродуктов, но вообще-то он приспосабливал свой двигатель для работы с разными видами топлива, от угольной пыли до растительного масла. В 1900 году на Всемирной выставке в Париже он продемонстрировал модель, работающую на арахисовом масле.
А за год до смерти, в 1912 году, Рудольф Дизель предсказывал, что растительное масло станет таким же важным видом топлива, как и нефтепродукты.
Владельцам арахисовых плантаций это предсказание наверняка понравилось, а владельцам нефтяных месторождений — не очень.
Отсюда — вторая конспирологическая версия смерти Дизеля. Другая газета по ее поводу написала: «Убит агентами нефтяных трестов».
Арахис против нефти
В последнее время в мире возрождается интерес к дизельному биотопливу. Оно меньше загрязняет атмосферу, но есть и проблема: оно занимает сельскохозяйственные угодья, а это ведет к повышению цен на продовольствие.
Во времена Рудольфа Дизеля это не выглядело большой проблемой: население Земли тогда было гораздо меньше, а климатические изменения не сильно беспокоили людей. Поэтому Рудольф Дизель, наоборот, мечтал, что его двигатель поможет развиваться бедным, аграрным странам.
Насколько иначе сейчас выглядел бы мир, если бы самыми ценными землями считались не те, где качают нефть, а те, где хорошо растет арахис? Мы можем только гадать.
Точно так же, как мы можем только гадать, что же в точности случилось с Рудольфом Дизелем.
Его тело было найдено в море рыбаками через десять дней. К тому времени оно настолько разложилось, что рыбаки не стали брать его на борт, но забрали личные вещи — кошелек, перочинный нож, футляр для очков.
Когда рыбаки добрались до берега, эти вещи опознал младший сын Дизеля. А тело изобретателя навсегда осталось в морских глубинах.
Функциональная модель двигателя внутреннего сгорания
Разработка и создание испытательного стенда для комплексного исследования гидравлических и тепловых режимов работы теплообменного оборудования тепловых сетей и теплопотребителей
Описание проекта
Функциональная модель двигателя внутреннего сгорания
В настоящее время существует большое количество компоновочных схем поршневых двигателей, которые имеют свои плюсы и минусы в зависимости от назначения энергетической установки, на которую они устанавливаются. Поэтому инженеру на начальном этапе необходимо правильно выбрать основные конструктивные и технические характеристики ДВС, которые бы максимально удовлетворяли требованиям заказчика.
В проекте разрабатывается макет двигателя внутреннего сгорания и провести оптимизацию конструкции в соответствии с требованиями заказчика. В частности, необходимо адаптировать конструкцию и характеристики двигателя к конечному объекту заказа (дизель-генератору, дизель-редуктору, тепловозу, карьерному самосвалу, энергетической установке и т.д.).
Цели и задачи проекта
Цель проекта: создание функционирующей модели поршневого двигателя внутреннего сгорания из макетных материалов.
1. Подготовка и анализ технического проекта, технических требований и технического задания.
2. Анализ рынка, выбор конструкции, разработка эскизного проекта.
3. Определение технологии изготовления макета, разработка технического проекта.
4. Разработка рабочей конструкторской документации.
5. Изготовление макета, проведение испытаний.
6. Итоговый анализ проделанной работы, защита проекта
Планируемые результаты проекта
В результате работы над проектом будет пройден полный жизненный цикл создания изделия от технического задания до изготовления макета поршневого ДВС, его испытаний и разработки проекта утилизации. В ходе работы будет разработано техническое задание на макет ДВС, получена конструкторская документация (чертежи на основе 3 D -моделирования, выполнены необходимые расчеты) и технологическая документация, а также изготовлен функционирующий макет поршневого двигателя с помощью 3 D -принтера и лазерного станка с ЧПУ. На завершающем этапе будут проведены испытания макета и проведена защита выполненной работы.
(необходимы сканы писем поддержки)
· ООО «Уральский дизель-моторный завод».
1. Начало работы: 01 октября 2017 года.
2. Разработка технического задания и конструкторской документации: октябрь 2017 года – декабрь 2017 года.
3. Разработка технологической документации и изготовление макета поршневого ДВС: февраль 2018 года – май 2018 года
4. Проведение испытаний, разработка проекта утилизации изделия: май – июнь 2018 года.
5. Завершение работы: 20 июня 2018 года.
Плотников Леонид Валерьевич, доц., к.т.н., доцент кафедры «Турбины и двигатели»; Кротов Владимир Михайлович, ведущий инженер ООО «Уральский дизель-моторный завод».
· Ауд.: Т-704 (ул. Софьи Ковалевской, 5).
Подать заявку на участие в проектной команде
Заявки принимаются по эл. почте leonplot @ mail . ru .
Максимальное количество участников проектной команды
7 человек (1-2 курсы)
Встреча с руководителем проекта состоится в соответствии с дополнительной договоренностью.
Двигатели
Двигатель, мотор (от лат. motor приводящий в движение) — устройство, преобразующее какой-либо вид энергии в механическую работу. Основное деление двигателей на первичные и вторичные. К первичным относят преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками. Первичные двигатели — это двигатели, использующие силу природы, ветряки, водяное колесо. Следующим этапом развития стали паровые двигатели, двигатель Стирлинга, паровая турбина. Во второй половине XIX века был построен стабильно работающий двигатель внутреннего сгорания. ДВС делятся по назначению, автомобильные, судовые, авиационные. По типу топлива дизельные, бензиновые. Прогресс не стоит на месте, в XX веке появились реактивные двигатели, газовые турбины, ядерные силовые установки. Ко вторичным двигателям относятся электродвигатели, пневмодвигатели и гидромашины.
Данный раздел сайта относится к первичным двигателям. Какой бы сложной не была конструкция двигателя мы поможем Вам разобраться. Вы можете скачать чертежи различных ДВС легковых и грузовых автомобилей, чертежи двигателей ВАЗ, чертежи судовых двигателей, чертежи газотурбинных двигателей. Так же Вы у нас найдете чертежи отдельных деталей двигателей, коленвалов, блоков цилиндров и т.д.
Основные программы для работы
с чертежами, опубликованными на сайте:
• КОМПАС-3D • AutoCAD
• SolidWorks • T-FLEX CAD
лучшие Инженеры
топ Закачек
топ Просмотров
топ За месяц
Состав: 3D Сборка
Софт: КОМПАС-3D 13 SP1
Состав: чертежи диаграмм работы двигателя и ПЗ
Софт: STEP / IGES 7
Состав: 3D Сборка габаритная
Софт: STEP / IGES 242
Состав: 3D модель одним файлом
Софт: STEP / IGES 204
Состав: 3D Сборка
Софт: STEP / IGES 13
Состав: 3D Сборка
Софт: STEP / IGES
Состав: 3D Сборка
Софт: Другая iges
Состав: 3D Сборка
Софт: КОМПАС-3D 13
Состав: поперечный разрез, общий вид, деталировка (поршень, шатун, впускной клапан)
Как работает водородный двигатель и какие у него перспективы
С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.
Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.
История развития рынка водородных двигателей
Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.
Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.
В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.
В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.
Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].
Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.
В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.
В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.
Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.
Как работает водородный двигатель?
На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.
Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.
По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.
Где применяют водородное топливо?
- В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
- В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
- В автобусах: например, в городских низкопольных автобусах марки MAN.
- В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
- На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
- Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
- В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
- В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.
Плюсы водородного двигателя
- Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
- Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
- Бесшумная работа двигателя;
- Более быстрая заправка — особенно в сравнении с электрокарами;
- Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.
Минусы водородного двигателя
- Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
- Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
- Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
- Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.
Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили
Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.
Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.
Водородный транспорт в России
В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.
В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.
Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.
Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».
В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.
Перспективы технологии
Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.
Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.
С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.
Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.
Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.
Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].
Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:
- Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
- Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
- Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.
Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.
Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.