1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внешнего сгорания своими руками чертежи

Мощный двигатель Стирлинга своими руками

Двигатель Стирлинга, некогда известный, был надолго забыт из-за широкого распространения другого мотора (внутреннего сгорания). Но сегодня о нем слышно все больше. Может быть, у него есть шансы стать более популярным и найти свое место в новой модификации в современном мире?

История

Двигатель Стирлинга — это тепловая машина, которая была изобретена в начале девятнадцатого века. Автором, как понятно, был некий Стирлинг по имени Роберт, священник из Шотландии. Устройство представляет собой двигатель внешнего сгорания, где тело движется в замкнутой емкости, постоянно меняя свою температуру.

Из-за распространения другого вида мотора о нем почти забыли. Тем не менее, благодаря своим преимуществам, сегодня двигатель Стирлинга (своими руками многие любители сооружают его дома) снова возвращается.

Основное отличие от двигателя внутреннего сгорания заключается в том, что энергия тепла приходит извне, а не вырабатывается в самом двигателе, как в ДВС.

Принцип работы

Можно представить замкнутый воздушный объем, заключенный в корпусе, имеющем мембрану, то есть поршень. При нагревании корпуса воздух расширяется и совершает работу, выгибая таким образом поршень. Затем происходит охлаждение, и он вгибается снова. В этом состоит цикл работы механизма.

Немудрено, что термоакустический двигатель Стирлинга своими руками многие изготавливают в домашних условиях. Инструментов и материалов для этого требуется самый минимум, который найдется в доме у каждого. Рассмотрим два разных способа, как легко его создать.

Материалы для работы

Чтобы сделать двигатель Стирлинга своими руками, понадобятся следующие материалы:

  • жесть;
  • спица из стали;
  • трубка из латуни;
  • ножовка;
  • напильник;
  • подставка из дерева;
  • ножницы по металлу;
  • детали крепежа;
  • паяльник;
  • пайка;
  • припой;
  • станок.

Это все. Остальное — дело нехитрой техники.

Как сделать

Из жести готовят топку и два цилиндра для базы, из которых будет состоять двигатель Стирлинга, своими руками изготовленный. Размеры подбирают самостоятельно, учитывая цели, для которых предназначено это устройство. Предположим, что мотор делается для демонстрации. Тогда развертка главного цилиндра составит от двадцати до двадцати пяти сантиметров, не более. Остальные части должны подстраиваться под него.

На верху цилиндра для передвижения поршня делают два выступа и отверстия диаметром от четырех до пяти миллиметров. Элементы выступят в роли подшипников для расположения кривошипного устройства.

Далее делают рабочее тело мотора (им станет обычная вода). К цилиндру, который сворачивают в трубу, припаивают кружочки из жести. В них проделывают отверстия и вставляют трубки из латуни от двадцати пяти до тридцати пяти сантиметров в длину и диаметром от четырех до пяти миллиметров. В конце проверяют, насколько герметичной стала камера, залив ее водой.

Далее приходит черед вытеснителя. Для изготовления берут заготовку из дерева. На станке добиваются, чтобы она обрела форму правильного цилиндра. Вытеснитель должен быть немногим меньше диаметра цилиндра. Оптимальную высоту подбирают уже после того, как двигатель Стирлинга своими руками будет сделан. Потому на данном этапе длина должна предполагать некоторый запас.

Спицу превращают в шток цилиндра. По центру деревянной емкости делают отверстие, подходящее под шток, вставляют его. В верхней части штока необходимо предусмотреть место для шатунного устройства.

Затем берут трубки из меди длиной четыре с половиной сантиметра и диаметром два с половиной сантиметра. Кружок из жести припаивают к цилиндру. По бокам на стенках делают отверстие для сообщения емкости с цилиндром.

Поршень также подгоняют на токарном станке под диаметр большого цилиндра изнутри. Наверху подсоединяют шток шарнирным способом.

Сборку заканчивают и настраивают механизм. Для этого поршень вставляют в цилиндр большего размера и соединяют последний с другим цилиндром меньшего размера.

На большом цилиндре сооружают кривошипно-шатунный механизм. Фиксируют часть двигателя при помощи паяльника. Основные части закрепляют на деревянном основании.

Цилиндр наполняют водой и под низ подставляют свечку. Двигатель Стирлинга, своими руками сделанный от начала и до конца, проверяют на работоспособность.

Второй способ: материалы

Двигатель можно сделать и другим способом. Для этого понадобятся следующие материалы:

  • консервная банка;
  • поролон;
  • скрепки;
  • диски;
  • два болта.

Как сделать

Поролон очень часто используют, чтобы сделать дома простой не мощный двигатель Стирлинга своими руками. Из него готовят вытеснитель для мотора. Вырезают поролоновый круг. Диаметр должен быть немного меньше, чем у консервной банки, а высота — чуть более половины.

По центру крышки проделывают отверстие для будущего шатуна. Чтобы он ходил ровно, скрепку сворачивают в спиральку и паяют к крышке.

Поролоновый круг посередине пронизывают тонкой проволокой с винтом и фиксируют его сверху шайбой. Затем соединяют кусок скрепки пайкой.

Вытеснитель вталкивают в отверстие на крышке и соединяют банку с крышкой путем пайки для герметизации. На скрепке делают маленькую петлю, а в крышке — еще одно, более крупное отверстие.

Жестяной лист сворачивают в цилиндр и спаивают, а потом прикрепляют к банке настолько, чтобы щелей не осталось совсем.

Скрепку превращают в коленчатый вал. Разнос при этом должен быть ровно девяносто градусов. Колено над цилиндром делают слегка больше другого.

Остальные скрепки превращаются в стойки для вала. Делается мембрана следующим образом: цилиндр оборачивают в пленку из полиэтилена, продавливают и крепят ниткой.

Шатун изготавливается из скрепки, которую вставляют в кусок резины, и готовую деталь прикрепляют к мембране. Длина шатуна делается такой, чтобы в нижней валовой точке мембрана была втянутой в цилиндр, а в высшей — вытянута. Таким же образом делается и вторая деталь шатуна.

Затем один приклеивают к мембране, а другой — к вытеснителю.

Ножки для банки можно также сделать из скрепок и припаять. Для кривошипа используют CD-диск.

Вот и готов весь механизм. Осталось лишь под него подставить и зажечь свечку, а затем дать толчок через маховик.

Заключение

Таков низкотемпературный двигатель Стирлинга (своими руками сооруженный). Конечно, в промышленных масштабах такие приборы изготавливаются совсем другим способом. Однако принцип остается неизменным: происходит нагрев, а затем охлаждение воздушного объема. И это постоянно повторяется.

Напоследок посмотрите эти чертежи двигателя Стирлинга (своими руками его можно сделать без особых навыков). Может быть, вы уже загорелись идеей, и вам захочется сделать что-либо подобное?

Двигатель Стирлинга – принцип работы. Низкотемпературный двигатель Стирлинга

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована тепловая машина, названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления – в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой – расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой – высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз – возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор – полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

Читать еще:  Хундай элантра неисправности двигателя

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а КПД двигателя Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

  • Главным минусом конструкции является ее материалоемкость.
  • Рабочее тело нужно охлаждать, из-за чего габариты существенно увеличиваются.
  • Для получения равных с ДВС характеристик необходимо использовать высокое давление.
  • К рабочему телу тепло подводят через стенки теплообменников, у которых ограниченная теплопроводность.
  • Чтобы изменить мощность двигателя, изменяют объем буферной емкости, среднее давление рабочего тела, фазного угла между вытеснителем и поршнем.

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на легковых автомобилях.

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и роторный двигатель Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.

Двигатель стирлинга своими руками, схема и чертеж

Суть изобретения Стирлинга

На схеме тепловой двигатель состоит из двух цилиндров компрессионного и рабочего. Левая и правая стороны удлиненного цилиндра разделены теплоизоляционной стенкой. Внутри ходит специальный вытеснительный поршень, который не соприкасается с боковыми стенками.

  1. К левой стороне устройства подводится тепло, к правой – охлаждение.
  2. Когда поршень движется влево, горячий воздух вытесняется в холодную правую зону и охлаждается.
  3. При этом газ уменьшается объеме.
  4. Рабочий поршень втягивается влево.
  5. При движении вытеснительного поршня вправо холодный воздух вытесняется в горячую зону, где нагревается и расширяется.
  6. Толкает рабочий поршень вправо.
  7. Рабочий и вытеснительный поршни связаны между собой через коленчатый вал с углом смещения 90 градусов.
  • электричество;
  • солнце;
  • ядерная энергия и пр.

История

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 год (английский патент № 4081 1819). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление узла, который он назвал «эконом».

В современной научной литературе этот узел называется «регенератор». Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. Чаще всего регенератор представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходя через наполнитель в одну сторону, отдаёт тепло регенератору, а при движении в другую сторону отбирает его. Регенератор может быть внешним по отношению к цилиндрам, а может быть размещён на поршне-вытеснителе в β- и γ-конфигурациях. В последнем случае размеры и вес машины оказываются меньше. Частично роль регенератора выполняет зазор между вытеснителем и стенками цилиндра (при длинном цилиндре надобность в таком устройстве вообще исчезает, но появляются значительные потери из-за вязкости газа). В α-стирлинге регенератор может быть только внешним. Он устанавливается последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.

В 1843 году брат изобретателя, Джеймс Стирлинг, использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в двигатель Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.

Как работает и где применяется двигатель внешнего сгорания

Несмотря на то, что двигатели Стирлинга были забыты на некоторый период, в современном производстве при создании новых модификаций выдающееся изобретение набирает новую популярность. Народные умельцы по достоинству оценили преимущества двигателей внешнего сгорания и сооружают самостоятельно в домашних условиях различные приспособления, основанные на их применении. Для изготовления теплового двигателя своими руками в домашних мастерских используются различные материалы и подручные средства:

  1. Большие и средние емкости, позаимствованные из домашнего хозяйства.
  2. Подшипники от старых механизмов.
  3. Диски.
  4. Металлические стержни различного диаметра для осей, стоек.
  5. Листы из металла, древесных плит для изготовления платформы.

Данные устройства используются в домашнем хозяйстве для выполнения самых различных работ:

  1. Вырабатывание электрической энергии в мелких масштабах.
  2. Создание тепловой энергии.

Количества мощности некоторых образцов самодельных двигателей Стирлинга, достаточно для обустройства электрической сети и обеспечения теплом частных домов, небольших школ, лечебных корпусов, спортивных сооружений, производственных мастерских и пр.

Двигатели, созданные своими руками, функционируют от различных источников тепла:

  • природный газ;
  • дрова;
  • уголь;
  • торф;
  • пропан и прочие виды топлива местного производства или полезных ископаемых.

Благодаря простоте конструкции, тепловые устройства, изготовленные своими руками, не нуждаются в регулярном техническом обслуживании агрегата. Сжигание топлива осуществляется за пределами корпуса цилиндра, поэтому рабочее тело не загрязняется продуктами сгорания, на внутренних стенках оборудования не скапливаются вредные отложения.

В сравнении с ДВС, в состав данной конструкции входит вдвое меньше подвижных узлов и деталей. Здесь требуется намного меньше смазки для ухода за быстро изнашиваемыми элементами. Требования к качеству смазочных материалов – минимальны.

Для подведения электросети к потребителям не требуется приобретать дорогостоящее оборудование. Подсоединение проводов к электрической сети осуществляется простыми привычными методами.

Двигатели внешнего сгорания, произведенные в бытовых условиях, легко монтируются на ровных площадках, покрытых гравием, без прочной фиксации. Данные установки не подвержены вредным атмосферным воздействиям. Для обеспечения бесперебойной стабильной работы двигателю не требуется специальный защитный корпус.

Основные модификации

«Стирлинг» Mk.I серии 1 — двигатели «Геркулес» III (1425 л.с; на первых 10 — «Геркулес» II, 1375 л.с). Стрелковое вооружение — 8 7,7-мм пулеметов «Браунинг» в трех башнях: носовой (2), нижней выдвижной (2) и хвостовой (4). Максимальная масса бомбовой нагрузки — 6340 кг. Экипаж — 7 чел. Изготовлено 80 единиц.

Читать еще:  Что пишет об украинских двигателей

«Стирлинг» Mk.I серии 2 — вместо нижней башни установлено 2 7,7-мм пулемета в боковых окнах. Выпускался с ноября 1941 г.

«Стирлинг» Mk.I серии 3 — двигатели «Геркулес» XI (1500 л.с). Вместо бортовых пулеметов установлена верхняя башня с 2 7,7-мм пулеметами.

Общий объем производства самолетов «Стирлинг» Mk.I составил 720 единиц.

«Стирлинг» Mk.II — двигатели «Райт» R-2600-A5B (1600 л.с). Построено 3 самолета, от планов широкомасштабного производства в Канаде отказались.

«Стирлинг» Mk.III — двигатели «Геркулес» VI или XVI (1635 л.с). Схема размещения вооружения аналогична Mk.I серии 3, но с более совершенными моделями верхней и хвостовой башен. С конца 1942 г. построено 1036 машин.

«Стирлинг» Т Mk.IV — буксировщик планеров на базе Mk.III. Из вооружения сохранена только кормовая башня с 4 7,7-мм пулеметами. Экипаж — 5 чел. С октября 1943 г. переоборудовано 143 Mk.III и построен 461 новый Т Mk.IV.

«Стирлинг» Т Mk.V — невооруженный транспортно-десантный самолет. С августа 1944 г. по январь 1946 г. изготовлена 161 машина.

Боевое использование самолётов Short Stirling

Short Stirling на аэродроме

В августе 1940 г. начались поставки «Стирлингов» в строевые части. Для перевооружения выбрали 4-ю группу, летавшую на двухмоторных «Уитли», а в её составе первой новые самолеты получила 7-я АЭ. Поставки новых самолетов велись крайне медленно, что затрудняло их освоение экипажами. Первый боевой вылет состоялся лишь 10 февраля 1941 г., когда 3 «Стирлинга» бомбили нефтехранилище в Роттердаме. В последующие месяцы мелкие группы и даже одиночные самолеты наносили удары по объектам на территории оккупированных нацистами стран и Германии. 17 апреля «Стирлинг» впервые появился над Берлином, а 30 апреля дебютировали в бою самолеты второй части, получившей «Стирлинги» — 15-й АЭ. Летом самолеты обеих эскадрилий привлекались к операциям «Циркус» — дневным рейдам над территорией Франции, имеющих целью спровоцировать немецкие истребители и подставить их под удар британских визави. Осенью «Стирлинги» появлялись над Италией (бомбили заводы «Фиат» в Турине, порт в Генуи) и Чехией (наносили удары по предприятиям Пльзеня). К концу 1941 г. на таких самолетах летало 5 АЭ.

В марте-апреле 1942 г. «Стирлинги» участвовали в широкомасштабной операции по минированию прибрежных вод Германии и оккупированных стран. Размах боевого применения постепенно рос: в ночь с 25 на 26 апреля в налете на цели в Германии участвовали 38 «Стирлингов», а в первом «рейде 1000 бомбардировщиков» в ночь на 31 мая -уже 88 машин этого типа. В июне-июле 1942 г. главными целями для «Стирлингов» стали верфи в Бресте, Гамбурге, Ростоке, а в августе-сентябре они вновь переключились на минные постановки. В ноябре, с высадкой союзников в Северной Африке, возобновились налеты на Италию — Геную, Турин, Болонью. В первые месяцы 1943 г. «Стирлинги» бомбили базы подводных лодок в Сен-Назере, Лорьяне и Бресте.

В апреле 1943 г. началось поступление Шорт «Стерлингов» Mk.III. Новые поставки позволили увеличить размах бомбовых ударов — в ночь с 23 на 24 мая на Дортмунд отправилось 120 «Стирлингов». В июле такие самолеты бомбили Гамбург, в августе — участвовали в налете на ракетный центр в Пенемюнде. Но потери были весьма существенными. Особенно острой ситуация стала в августе 1943 г., когда в двух налетах на Берлин было сбито 33 «Стирлинга» из 226, отправившихся на цель. Причиной были признаны низкие летные данные самолета — скорость и потолок. Следуя в общем порядке, эскадрильи «Стирлингов» отставали от частей «Галифаксов» и «Ланкастеров», становясь легкой добычей немецкой ПВО. Следствием этого стало решение о постепенном переводе «Стирлингов» на решение вспомогательных задач (прежде всего, транспортных). 28 июля 1944 г. самолеты этого типа в последний раз ставили морские мины у Бреста, а 8 сентября нанесли бомбовый удар, целью которого был Гавр. Правда, в январе 1945 г. «Стирлинги» совершили ещё несколько дневных налетов на второстепенные цели на территории Бельгии. В качестве транспортных и буксировщиков планеров такие машины широко применялись в ходе операций «Оверлорд» в июне 1944 г. и «Маркет Гарден» в сентябре. Последней стала десантная операция «Вар-сити» по захвату мостов на Рейне 24 марта 1945 г.

Недобор летных характеристик, в конечном итоге поставивший крест на карьере «Стирлинга» как бомбардировщика, был в первую очередь обусловлен требованиями заказчика. Так, ограничение размаха крыла привело к снижению дальности полета и увеличению длины разбега. Среди положительных черт «Стирлинга» стоит отметить легкость управления — по этому параметру он превосходил «Галифакса» и не уступал «Ланкастеру».

Сфера применения двигателей внешнего сгорания

В результате последующих усовершенствований конструкции мотора, газ нагревается/охлаждается при постоянном давлении в системе (вместо сохранения объема). Это изобретение инженера из Швеции по имени Эриксон, позволило создавать двигатели, предназначенные для использования работниками шахт, типографий, судов и пр. В пассажирских экипажах того времени тепловые двигатели не применялись, т. к. обладали сравнительно большим весом.

Двигатели внешнего сгорания часто использовались для приведения в действие генераторов в районах, где отсутствовала подача электроэнергии.

Материалы и приспособления

Сейчас мы разберем, что нам нужно взять для создания двигателя в домашних условиях. Что нам потребуется взять для стирлинга:

  • Воздушный шар.
  • Три баночки от колы.
  • Специальные клеммы, пять штучек (на 5А).
  • Ниппели для закрепления велосипедных спиц (две штучки).
  • Вата из металла.
  • Кусок проволоки из стали длиной в тридцать см и сечением 1 мм.
  • Кусок большой стальной или медной проволоки с диаметром от 1.6 до 2 мм.
  • Деревянный штырь с диаметром двадцать мм (длина один см).
  • Крышка от бутылочки (из пластика).
  • Электропроводка (тридцать см).
  • Специальный клей.
  • Вулканизированная резина (где-то 2 сантиметра).
  • Рыболовная леска (длина тридцать см).
  • Несколько грузил для балансировки (например, никелевые).
  • CD-диски (три штуки).
  • Специальные кнопки.
  • Жестяная баночка для создания топки.
  • Теплоустойчивый силикон и консервная банка для изготовления водного охлаждения.

Можно ли использовать двигатели Стирлинга вместо ДВС

Компания General Motors со второй половины ХХ века начала заниматься внедрением в производство V-образных стирлингов для кривошипно-шатунных механизмов. При испытаниях двигателей внешнего сгорания было замечено, что они идеально работают без звуков и шума. Здесь отсутствуют карбюратор, система зажигания, форсунки, требующие высокое давление, свечи, клапаны и пр. Для создания достаточного давления в цилиндрах двигателя не нужно взрывать топливо, как в ДВС. При использовании автомобилей, оснащенных двигателями внешнего сгорания, можно решить проблему, связанную со снижением шума в больших городах.

В результате проведенных испытаний были выявлены следующие достоинства и недостатки двигателей внешнего сгорания.

  • Преимущества данных устройств:
  • бесшумная работа (нет необходимости устанавливать глушитель);
  • отсутствие вибраций;
  • нет необходимости в создании высокого давления в системе;
  • универсальность, способность работать от различных источников тепла;
  • легкость регулировок.

К недостаткам двигателей относятся:

  • сравнительно большой вес конструкции;
  • малая экономичность;
  • высокая себестоимость механизма.

Упрощенная схема V- образного двигателя внешнего сгорания:

Один из цилиндров двигателя является рабочим (1), другой, соответственно, компрессионным (7). В каждом из них расположен свой поршень (2). В центральной части схемы размещены: охладитель (6), теплообменник (4), нагревательный элемент (3). При максимальной скорости одного из поршней, другой в это же время находится в неподвижном состоянии, его скорость равна нулю. Угол смещения фаз равен 90°, благодаря взаимно перпендикулярному расположению цилиндров.

Вместо котельных и электричества. Псковские ученые создали автономный «двигатель будущего»

С теплом, светом и водой теперь не будет проблем. И все это без использования котельных, линий электропередачи и прочих коммуникаций. Такой «коммунальный рай без хлопот и забот», как поется в песне, уже в ближайшем будущем может появиться в России благодаря уникальной разработке псковских ученых. В лабораториях Псковского госуниверситета они сконструировали автономный модуль жизнеобеспечения, «сердце» которого — роторно-лопастной двигатель с внешним подводом тепла.

Начиналось с мечты

Автор модуля — Юрий Лукьянов, инженер-электроник ПсковГУ, главный конструктор научной группы. Говорит, что модуль жизнеобеспечения появился благодаря юношеской идее. В далеком 1978-м Юрий работал на заводе тяжелого электросварочного оборудования и мечтал создать летающий автомобиль.

«Есть такой эффект — «экран Земли», когда самолет заходит на посадку, он барражирует, то есть воздушный поток от крыльев не дает самолету опуститься. Поэтому он на этом потоке, на «экране Земли», движется долгое время. Тогда и возникла идея сделать легковую машину, которая бы летала на высоте 5−6 метров на эффекте «экрана Земли», — вспоминает Лукьянов.

Но для такой машины требовался компактный двигатель в 300 лошадиных сил. Постепенно ученые выяснили, что роторно-лопастная схема позволит создать двигатель, по объему равный трехлитровой банке. Мощность такого двигателя — примерно 200 лошадиных сил. Тогда вес машины будет небольшой, и можно сделать такую машину.

«Так и зародилась идея создания компактного двигателя, способного выдавать большую мощность на базе роторно-лопастной машины, с этого и началась вся история», — говорит Лукьянов.

Сейчас, спустя более 40 лет, журналисты и коллеги-инженеры называют созданное им устройство не иначе как «двигатель будущего».

«На самом деле все просто, — говорит ученый, рассказывая о принципе действия модуля. — Парогенератор вырабатывает пар, он раскручивает роторно-лопастную машину. Она в свою очередь крутит электрический генератор, мы получаем электричество».

Оставшийся пар конденсируется в теплообменнике и охлаждается, при этом получается горячая вода 90 градусов для отопления. Она отправляется в бак промежуточного накопителя, из которого выходит чистая горячая вода, подаваемая в краны потребителей.

«Также из этого бака мы насосом подаем горячую воду в парогенератор, она вскипает, получается снова пар — и вот он, замкнутый цикл», — говорит Лукьянов.

Читать еще:  Чем отличаются двигатели doch

Кроме того, добавляет ученый, вся вода, поступающая в модуль, проходит тщательную очистку.

«Мы очищаем сетевую воду с помощью технологии обратного осмоса (технология очистки воды, при которой жидкость проходит через специальную мембрану, избавлясь от химических примесей и бактерий — прим. ТАСС), и когда вода кипит, то отложений солей в системе нет. В итоге мы получаем питьевую воду, и осмос нам нужен, чтобы не использовать химические реагенты. В любой котельной существует подготовка воды, чтобы ее вскипятить, а у нас нет реагентов», — говорит Лукьянов.

Работает на всем, что горит

Для работы модуля жизнеобеспечения нужны вода и топливо. Воду можно использовать любую: водопроводную или из скважины. А «заправлять» устройство можно практически всем, что горит: солярка, газ, минеральное отработанное масло или спирт. Подойдут даже опилки и солнечная энергия. С помощью топлива вода в установке нагревается и превращается в пар, который и вращает «двигатель будущего».

Он принципиально отличается от тех, которые сейчас есть под капотом у каждого автомобиля. В «движке» Лукьянова нет клапанов, которые в двигателе внутреннего сгорания работают буквально на износ — при высоких температурах и больших нагрузках. Псковский мотор — это хитроумная система лопастей и механизмов, которые равномерно распределяют нагрузку по всему двигателю. За счет этого устройство оказалось в три раза легче при той же мощности, и самое главное — оно не вырабатывает выхлопных газов, как в автомобиле.

По словам ученого, похожий по конструкции двигатель использовался при создании «Ё-мобиля».

«Двигатель в «Ё-мобиле» — это такая же конструкция, как у нас, там используется принцип роторно-лопастной машины. Механизм они придумали свой, но на этом провозились. А мы использовали другой механизм, который запатентован, который распределяет нагрузку равномерно», — поясняет ученый.​

«Старая добрая» паровая машина

В основе принципа действия модуля жизнеобеспечения, говорит Лукьянов, — старая добрая паровая машина, которая известна человечеству аж с XVII века. Используя проверенную временем технологию, ученые смогли сделать так, чтобы топливо в «устройстве будущего» сгорало при пониженных температурах и при избытке кислорода. А это означает, что такой двигатель не дымит: выбросы вредных веществ в атмосферу практически нулевые.

«Разработанный двигатель сравним по экологичности с домашней кухней, со сгоранием газа на газовой плите. В основе — паровая машина с низкими параметрами пара, там давление всего 10 атмосфер, а значит, температура пара не выше 196 градусов по Цельсию», — говорит ученый.

Чтобы получить такие параметры, высокие температуры сжигания топлива не нужны, поэтому горелка, используемая для создания пара, поддерживает температуру не более 400 градусов. В результате получается, что при избытке сгорания воздуха, как и на кухне, мы не получаем вредных выбросов, они минимальны по окисям азота и угарному газу.

А еще, добавляет Лукьянов, созданная машина оказалась весьма экономичной, потери на трение у нее в семь раз меньше, чем у остальных двигателей. «Поскольку нет возвратно-поступательного движения, то потери на трение в нашей конструкции всего лишь 5%, это как у турбины. При этом, представьте, у других двигателей только на трение потери составляют 35%», — говорит ученый.

Прототип за свой счет

Изобретением, вспоминает Лукьянов, в 2006 году заинтересовались в правительстве страны: ученые получили грант на 7,6 млн рублей от Федерального агентства по науке и инновациям.

На эти средства провели научно-исследовательские работы, успешно их защитили, а вот на создание опытного образца конкурс выиграть не смогли. В итоге первый прототип устройства псковские инженеры изготовили за свой счет.

«Мы своими силами создали прототип, года три создавали в лабораториях ПсковГУ, трудилась вся команда, около 15 человек. Университет помог нам приобрести парогенератор, поставили его в нашу машину, сделали систему, и в итоге появился модуль жизнеобеспечения с внешним подводом тепла (пара) из парогенератора», — говорит Лукьянов.

К массовому производству

Сейчас, говорит Лукьянов, к нему поступают сотни заявок от желающих купить модуль жизнеобеспечения. Наибольший интерес устройство вызывает у жителей отдаленных территорий.

«Вот сейчас обращаются с Дальнего Востока, там раздали «дальневосточный гектар», а энергетики нет, оттуда звонят и говорят: «Если твой контейнер привезти сюда, то появится цивилизация».

Предложения поступают со всей России, все хотят купить модуль, а кто бы мог вложить деньги в опытно-конструкторскую разработку и заняться производством — таких мало», — рассказывает ученый.

А еще, добавляет инженер, есть и те, кто готов запустить серийное производство без тестовых испытаний.

«Много тех, кто говорят, мол, давайте чертежи и мы поехали, то есть минуя опытно-конструкторские разработки. А я всегда отвечаю, что ОКР нужно пройти обязательно, важно испытать образец, проверить на перегрузку, в разных режимах работы, провести климатические испытания. Он, конечно, функционирует, но мы его еще не испытывали, а это нужно обязательно сделать, вопрос — где и кем», — говорит Лукьянов.

По оценке ученого, чтобы испытать модуль, придется потратить порядка 90 млн рублей. И эту сумму готовы выделить инвесторы. Но пока реальных договоров у Лукьянова ни с кем нет.

Серьезная экономия

Если модуль удастся поставить на конвейер, то псковское изобретение поможет серьезно сэкономить на «коммуналке».

«Чтобы, например, обеспечить ресурсами двухэтажный индивидуальный дом, вполне хватит модуля 30 кВт. При условии массового производства он будет стоить около 1 млн рублей. По сути, это стоимость легкового автомобиля, и вы обеспечены теплом, электричеством, горячей и чистой питьевой водой. Такая установка может окупиться за год-полтора», — делится расчетами Лукьянов.

Модуль даст еще более серьезную экономию, если поступит на вооружение предприятий.

«Сейчас предприятия, которые хотели бы получить этот автономный модуль, просят 1 МВт мощности, такая установка будет стоить 20 млн рублей, но она окупается за полгода. Подсчет простой: в году 8 тыс. часов, если установка 1 МВт работает в течение года, производится 8 млн кВт⋅ч электроэнергии, если посчитать по розничной цене, то в год предприятие только на энергию тратит 40 млн рублей», — поясняет инженер.

А еще одно преимущество, добавляет ученый, — это что модуль можно применять везде, даже в больницах.

«Модуль не вибрирует и не шумит. У нас симметричная конструкция двигателя, поэтому механизм уравновешенный, и вибрация всего 300 микрон, по шуму это сравнимо со звуком работы системного блока компьютера или холодильника», — рассказывает Лукьянов.

Для сравнения: в больницах нормы по шуму — 50 децибел, шум модуля как раз удерживается около этого уровня.

«А поскольку в нем есть пар, то в частных домовладениях, например, можно баню прогреть паром за 5 минут и не нужно печку топить. Достаточно подвести пар из парогенератора, температура его под 200 градусов: и огня нет, то есть баня не сгорит», — улыбается инженер.

Сжигание мусора без выбросов

По словам Лукьянова, автономный модуль жизнеобеспечения может дать не только тепло, воду и свет. На основе устройства можно возводить передвижные мусоросжигающие заводы, которые не будут дымить и выбрасывать в атмосферу вредные вещества.

Если усовершенствовать изобретение, добавив к нему плазматроны, то получится что-то наподобие машины из голливудского фильма «Назад в будущее», работающей на чем угодно, включая жестяные банки и банановую кожуру.

«Есть способ, называется плазмо-химический, когда весь мусор не разбирая подвергают очень высокой температуре в плазматроне, порядка 6 тыс. градусов, как на Солнце, чтобы весь этот мусор перешел в окисное состояние. Воздух в плазмохимическом реакторе замещают на пар, который дает парогенератор из нашего автономного модуля. При уничтожении мусора внизу этого реактора образуется жидкий расплав металла, сверху будет стекольный шлак. А атмосфера — водяной пар. Он горячий, 960 градусов по Цельсию, его можно направить в наш парогенератор для того, чтобы подогреть цикловую воду. Мы получаем чистый пар для машины, и она вырабатывает нам электричество. Оно, в свою очередь, необходимо для работы плазматрона, а избыток электричества направляем в сеть, то есть получаем снова замкнутую установку», — делится идеей Лукьянов.

И самое главное, добавляет он, что при таком способе сжигания мусора не нужна труба, так как в атмосферу выбрасывать просто нечего.

«После того как мы отобрали температуру 960 градусов у пара в нашем парогенераторе и потом еще сконденсировали эту пароводяную смесь, то трубы нет, горения в воздухе нет и выбросов в воздух нет никаких», — поясняет ученый.

По расчетам Лукьянова, модуль можно привезти в любое место, где находятся залежи мусора, и уничтожать их с производительностью 10 тонн в час.

«Все просто — привезли модуль на свалку и уничтожили мусор. И главное — его не нужно высушивать. При любых других способах нужно весь мусор высушивать, он мокрый, имеет 100-процентную влажность, а для этой установки влажный — и хорошо. У нас на арктических территориях столько бочек с остатками масла и мазута, все это можно уничтожить, прямо железо можно бросать, потому что температура плавления железа — 1,5 тыс. градусов, а температура плазматрона — 6 тыс. градусов», — заверяет инженер.

Сейчас псковские ученые раздумывают над тем, как реализовать эту идею на практике.

«Будем дальше двигаться в этом направлении, надеемся на поддержку со стороны государства и что на этот проект обратят внимание», — добавляет Лукьянов.

Ссылка на основную публикацию
Adblock
detector