0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление внутри двигателя внутреннего сгорания

СПОСОБ ДИАГНОСТИРОВАНИЯ ЦИЛИНДРО-ПОРШНЕВОЙ ГРУППЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к области технической диагностики и может быть использовано для определения технического состояния цилиндро-поршневой группы отдельных цилиндров в двигателе внутреннего сгорания путем индицирования давления внутри отключенного цилиндра и вычисления скорости его изменения при работе двигателя на минимальной частоте вращения холостого хода. Предлагаемый способ заключается в том, что давление внутри отключенного цилиндра измеряют датчиком давления на работающем на минимальной частоте вращения холостого хода двигателе, при этом для оценки состояния сопряжения “поршень-кольца-гильза” цилиндро-поршневой группы измерение давления в цилиндре двигателя и вычисление по нему скорости его изменения осуществляют по углу поворота коленчатого вала при помощи датчика углового перемещения, который устанавливают напротив зубчатого венца маховика. Предложенный способ позволяет проводить оценку состояния сопряжения “поршень-кольца-гильза” цилиндро-поршневой группы двигателя по всей рабочей поверхности цилиндра, выявлять различные неисправности и прогнозировать остаточный ресурс двигателя. 2 ил.

Способ диагностирования цилиндро-поршневой группы двигателя внутреннего сгорания, заключающийся в том, что давление внутри отключенного цилиндра измеряют датчиком давления на работающем на минимальной частоте вращения холостого хода двигателе путем индицирования, отличающийся тем, что для увеличения точности и достоверности оценки состояния сопряжения “поршень-кольца-гильза” цилиндро-поршневой группы измерение давления в цилиндре по углу поворота коленчатого вала и вычисление по нему скорости его изменения осуществляют путем дифференцирования функции изменения давления по формуле:
d p d φ = P φ ‘ = V p ( φ ) ,
где Vp(φ) — скорость изменения давления в цилиндре, МПа/град. п.к.в.;
P ϕ ‘ — производная функции изменения давления по углу поворота коленчатого вала;
d p d ϕ — дифференциал функции изменения давления по углу поворота коленчатого вала;
при помощи датчика углового перемещения, установленного напротив зубчатого венца маховика, который разбивает индикаторную диаграмму на промежутки, соответствующие угловому перемещению коленчатого вала, равные расстоянию между соседними зубьями маховика, и на каждом таком участке вычисляют скорость изменения давления по формуле:
Δ P Δ φ = P i − P i − 1 φ i − φ i − 1 = V p i ( φ i ) ,
где Δ P Δ ϕ — отношение разности давлений P i-го и P i-1-го, МПа, к разности угловых перемещений φ i-го и φ i-1-го, угол п.к.в.;
по результатам определения изменения давления и скорости его изменения судят о техническом состоянии цилиндро-поршневой группы двигателя.

Изобретение относится к области технической диагностики и может быть использовано для определения технического состояния цилиндро-поршневой группы (ЦПГ) отдельных цилиндров в двигателе внутреннего сгорания путем индицирования давления внутри цилиндра и вычисления скорости его изменения при работе двигателя на минимальной частоте вращения холостого хода.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ диагностирования двигателя внутреннего сгорания, опубликованный в Интернет 29.10.2009 г. (Анализ осциллограммы давления в цилиндре http://old.quantexlab.ru).

Известный способ основан на получении осциллограммы давления в отключенном цилиндре при помощи установки в него датчика давления на работающем двигателе и анализе давлений в ее характерных точках.

Недостатком указанного способа является невозможность оценки сопряжения “поршень-кольца-гильза” ЦПГ по всей рабочей поверхности гильзы цилиндра из за отсутствия привязки к угловому перемещению коленчатого вала при измерении давлений внутри цилиндра, а также вычислению скорости его изменения.

Таким образом, для оценки сопряжения “поршень-кольца-гильза” ЦПГ по всей рабочей поверхности цилиндра помимо измерения давлений по углу поворота коленчатого вала необходимо учитывать скорость его изменения.

Заявляемый способ позволяет получить новый по сравнению с прототипом технический результат, заключающийся в качественной оценке сопряжения “поршень-кольца-гильза” ЦПГ по всей рабочей поверхности гильзы цилиндра.

Для достижения указанного технического результата используется следующая совокупность существенных признаков:

— в способе диагностирования ЦПГ, так же как и в прототипе, измерение давлений в отключенном цилиндре работающего двигателя осуществляется при помощи установки в него датчика давления;

— измерение давлений внутри цилиндра по углу поворота коленчатого вала осуществляется при помощи датчика углового перемещения;

— вычисление по осциллограмме скорости изменения давления осуществляется при помощи дифференцирования функции изменения давления внутри цилиндра по углу поворота коленчатого вала.

Сущность способа заключается в том, что измерение давления внутри отключенного цилиндра на работающем на минимальной частоте вращения холостого хода двигателе и вычисление скорости его изменения осуществляют при помощи датчика давления, при этом для увеличения точности и достоверности оценки состояния сопряжения “поршень-кольца-гильза” ЦПГ измерение давления в цилиндре двигателя осуществляют по углу поворота коленчатого вала при помощи датчика углового перемещения, который устанавливают напротив зубчатого венца маховика.

На фиг.1 представлена структурная схема измерительного устройства.

На фиг.2 представлен график изменения давления внутри цилиндра по углу поворота коленчатого вала.

Структурная схема измерительного устройства состоит из датчика давления 1, устанавливающемого на место свечи зажигания для бензиновых двигателей или на место форсунок у дизелей, датчика углового перемещения 2 коленчатого вала, устанавливаемого напротив зубчатого венца маховика, измерительного прибора 3, регистрирующего давление внутри цилиндра по углу поворота коленчатого вала и вычисляющего скорость изменения давления по всей рабочей поверхности гильзы цилиндра.

Измерительный прибор 3 снабжен индикатором, на котором отражается график изменения давления внутри цилиндра по углу поворота коленчатого вала. На маховике рядом с зубчатым венцом устанавливается маркер, соответствующий положению поршня первого цилиндра в верхней мертвой точке (ВМТ) в момент, когда датчик углового перемещения находится напротив этого маркера. Датчик формирует сигнал ВМТ, который является синхронизирующим для отсчета давления в цилиндре по углу поворота коленчатого вала. На фиг.2 показан график изменения давления внутри цилиндра по углу поворота коленчатого вала.

На графике отчетливо видно изменение давления внутри цилиндра по углу поворота коленчатого вала. Здесь можно выделить характерные точки оценки состояния ЦПГ. P1 — давление на впуске. У бензиновых двигателей при закрытой дроссельной заслонке давление на впуске ниже атмосферного. Оно характеризует герметичность впускного тракта и состояние гильзы цилиндра. У дизелей этот параметр несколько выше, то есть давление ближе к атмосферному из-за отсутствия дроссельной заслонки, однако даже по нему можно оценить герметичность впускного тракта.

Давление P2 характеризует герметичность цилиндра, состояние клапанов. У бензиновых двигателей оно бывает в пределах 10-14 кг/см 2 в зависимости от степени сжатия, у дизелей — в пределах 24-28 кг/см 2 .

Давление P3 ниже атмосферного и характеризует состояние поршневых колец и гильзы цилиндра. При движении поршня к верхней мертвой точке на такте сжатия часть воздушного заряда уходит в поддон картера через кольцевые неплотности, поэтому на такте расширения при движении поршня вниз за счет этой утечки и масляного клина в нижней части поршневых колец создается кратковременное разрежение до момента открытия выпускного клапана. Это разрежение характеризует, насколько поршневые кольца хорошо уплотняют надпоршневое пространство. Если кольца изношены, закоксованы или поломаны вместе с перегородками на поршне, то разрежение Р3 будет увеличиваться за счет того, что утечки на такте сжатия будут увеличиваться, а при движении поршня вниз на такте расширения масляный клин внизу колец будет препятствовать перетеканию воздушного заряда из поддона в надпоршневое пространство и поэтому разрежение будет увеличиваться.

По графику изменения давления в цилиндре можно также вычислять скорость изменения давления по всей рабочей поверхности гильзы цилиндра. Этот параметр позволяет оценивать состояние сопряжения “поршень-кольца-гильза” по углу поворота коленчатого вала от нижней до верхней мертвой точки движения поршня. В совокупности с давлением конца сжатия этот параметр увеличивает достоверность оценки состояния ЦПГ двигателя (может выявлять сколы, задиры на поверхности цилиндра). Для вычисления скорости изменения давления внутри цилиндра необходимо продифференцировать функцию изменения давления на индикаторной диаграмме.

где Vp(φ) — скорость изменения давления в цилиндре, МПа/град. п.к.в.;

P ϕ ‘ — производная функции изменения давления по углу поворота коленчатого вала;

d p d ϕ — дифференциал функции изменения давления по углу поворота коленчатого вала.

Для этого используются численные методы дифференцирования. Индикаторная диаграмма разбивается на малые промежутки (фиг.2), соответствующие угловому перемещению коленчатого вала, равные расстоянию между соседними зубьями маховика. На каждом таком участке вычисляется скорость изменения давления.

где Δ p Δ ϕ — отношение разности давлений P i-го и P i-1-го, МПа, к разности угловых перемещений φ i-го и φ i-1-го, угол п.к.в.

Читать еще:  График работы двигателя f16d3

Зная эталонные диаграммы изменения давления по углу поворота коленчатого вала внутри цилиндра и вычисленную скорость изменения давления, можно с высокой точностью и достоверностью оценивать состояние ЦПГ, выявлять различные неисправности и прогнозировать остаточный ресурс двигателя.

Стремительный рост микроэлектроники позволяет в настоящее время отказаться от традиционных стрелочных манометрических приборов, позволяющих контролировать отдельные показатели в процессе диагностирования. Сегодня существует огромный перечень микроконтроллеров, позволяющих в реальном масштабе времени контролировать различные процессы, в том числе и измерение, и обработку индикаторных диаграмм давлений в цилиндре двигателя в зависимости от угла поворота коленчатого вала. Низкая стоимость и малые габариты микроконтроллеров позволяют создавать миниатюрные диагностические приборы, имеющие цветной графический дисплей, кнопочное управление, возможность передачи диагностической информации на большие расстояния.

СИСТЕМА ВЕНТИЛЯЦИИ И ГЕРМЕТИЗАЦИИ КАРТЕРА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ТРАНСПОРТНОГО СРЕДСТВА Российский патент 1995 года по МПК F01M13/06

Описание патента на изобретение RU2039874C1

Изобретение относится к машиностроению и может быть использовано в системе вентиляции и герметизации картеров двигателя и трансмиссии транспортного средства, которое в процессе эксплуатации погружается в воду (т.е. преодолевает водные преграды).

Известна закрытая система вентиляции картера двигателя внутреннего сгорания транспортного средства, которое снабжено трансмиссией и может в процессе эксплуатации погружаться в воду, содержащая магистраль отсоса картерных газов во впускной трубопровод ( коллектор) двигателя, клапан-корректор, управляющая полость которого диафрагмой, края которой зажаты крышкой, разделена на две полости, одна из которых соединена с атмосферой, а при погружении двигателя с водой, а к другой подведена магистраль отсоса газов из картера, причем на диафрагме жестко закреплен плунжер, который управляет (автоматически) отверстием, ведущим из полости к впускному коллектору.

Недостатком данной системы является использование картерных газов двигателя внутреннего сгорания, объем и давление которых незначительны, вследствие чего не обеспечивается преодоление транспортным средством глубин более 2 м, кроме того, подача картерных газов в картеры агрегатов трансмиссии не предусмотрена, что не исключает попадание в них воды, а отсос картерных газов во впускной трубопровод двигателя не исключает попадания в цилиндры двигателя масла, а также способствует обеднению горючей смеси, приготавливаемой карбюратором.

Изобретение направлено на повышение эффективности и надежности герметизации картеров двигателей и агрегатов трансмиссии различных транспортных средств.

Решение поставленной задачи достигается тем, что система снабжена воздушным ресивером, подключенным соединительной магистралью к управляющему клапану, магистраль отсоса газов выполнена с ответвлениями, одно из которых сообщено с картером трансмиссии, а другое с второй полостью корпуса, при этом плунжер снабжен пружиной, размещенной в упомянутой полости, и в нем выполнены сквозные соединительные каналы.

На фиг. 1 изображена схема предложенной системы в момент, когда давление внутри картеров равно давлению окружающей среды; на фиг. 2 запорный плунжер в момент, когда давление окружающей среды больше давления внутри картеров; на фиг. 3 то же, в момент, когда давление внутри картеров больше давления окружающей среды.

Система вентиляции и герметизации картера двигателя внутреннего сгорания транспортного средства, которое снабжено трансмиссией и в процессе эксплуатации погружается в воду, состоит из воздушного ресивера 4, подключенного соединительной магистралью 3 к части 5 корпуса управляющего клапана, который соединен магистралями 6 и 20 (ответвление) соответственно с картером 1 двигателя и с картером 2 агрегатов трансмиссии (коробкой передач, раздаточной коробкой и т.п.), а магистраль 7 (ответвление) через штуцер 12 соединена с полостью 8 части 5 корпуса управляющего клапана. Между частями 5 и 18 корпуса зажата резиновая диафрагма 17, жестко соединенная с помощью штока 16 с запорным плунжером 13.

В плунжере 13 выполнены сквозные соединительные каналы 14 и 15, через которые соответственно может поступать в картеры воздух из ресивера 4 или могут удаляться газы из картера 1 двигателя и картеров 2 трансмиссии через выпускное окно 11 и соединительную магистраль 9 в воздушный фильтр 10 силовой установки.

На диафрагму 17 с одной стороны действуют пружина 19 и давление картерных газов, а с противоположной стороны-давление воздуха при движении автомобиля на суше или давление воды при преодолении транспортным средством водной преграды.

Система работает следующим образом.

При движении транспортного средства по суше диафрагма 17 находится в среднем положении (фиг. 1), т.к. давление пружины 19 и картерных газов уравновешивается давлением окружающего воздуха. Каналы 14 и 15 запорного плунжера 13 не соединены с магистралями 3, 6, 7, 9, и 20. При этом воздух из ресивера 4 не попадает в картеры 1 и 2, а картерные газы не попадают в воздушный фильтр 10 двигателя внутреннего сгорания.

Повышение давления во внутренней полости картеров 1 и 2 из-за прорыва картерных газов в картер двигателя вызывает повышение давления в поддиафрагменной полости 8. При этом диафрагма 17 перемещается вместе с запорным плунжером 13 так, что соединяются выпускной канал 15 и выпускное окно 11 и картерные газы отводятся в воздушный фильтр 10 (фиг. 3).

При входе автомобиля в воду сила ее давления действует на диафрагму 17, которая перемещает запорный плунжер 13 посредством штока 16 (фиг. 2). При этом происходит сообщение ресивера 4 с внутренней полостью картеров 1 и 2 и поддиафрагменной полостью 8. Давление внутри картеров 1 и 2 повышается до тех пор, пока давление воды и давление воздуха в поддиафрагменной полости 8 картерах 1 и 2 не станут равными. При этом обеспечивается следящее действие запорного плунжера 13, т. к. при увеличении или уменьшении давления воды вследствие погружения в воду или выхода из воды давление внутри агрегата будет соответственно увеличиваться или уменьшаться, исключая при этом попадание воды во внутреннюю полость картеров 1 и 2 агрегатов.

При выходе автомобиля из воды сила ее давления на диафрагму 17 уменьшится и давление в поддиафрагменной полости 8 станет больше давления воды. Вследствие этого запорный плунжер 13 переместится, соединив выпускной канал 15 с выпускным окном 11, и воздух будет выходить в воздушный фильтр 10 до тех пор, пока давление в поддиафрагменной полости 8 не станет равным атмосферному. Запорный плунжер 13 при этом займет первоначальное положение.

Таким образом, предлагаемая система автоматически поддерживает давление воздуха (газа) в агрегатах автомобиля равным давлению окружающего воздуха при движении автомобиля по дороге и равным давлению воды при преодолении автомобилем водной преграды.

Похожие патенты RU2039874C1

Иллюстрации к изобретению RU 2 039 874 C1

Реферат патента 1995 года СИСТЕМА ВЕНТИЛЯЦИИ И ГЕРМЕТИЗАЦИИ КАРТЕРА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ТРАНСПОРТНОГО СРЕДСТВА

Использование: в системе вентиляции и герметизации картеров двигателя и трансмиссии транспортного средства, которое в процессе эксплуатации погружается в воду. Сущность изобретения: система содержит воздушный ресивер 4, подключенный соединительной магистралью 3 к части 5 корпуса управляющего клапана, который установлен в магистралях 6, 9 отсоса газов из картера 1 двигателя в его впускную систему. Управляющая камера корпуса диафрагмой 17, зажатой между частями 5 и 18 корпуса, разделена на две полости, одна из которых связана с окружающей средой, а в другой размещен плунжер 13. Магистраль 6 ответвлением 20 соединена с картером 2 трансмиссии и ответвлением 7 с полостью 8 корпуса управляющего клапана. В плунжере 13 выполнены сквозные соединительные каналы 14 и 15, через которые воздух из ресивера 3 поступает в картеры 1 и 2 или картерные газы удаляются во впускную систему (воздушный фильтр 10) двигателя. На диафрагму 17 с одной стороны действует пружина 19 и давление картерных газов, а с другой стороны давление воздуха при движении транспортного средства по суше или давление воды при преодолении транспортным средством водных преград. 3 ил.

Формула изобретения RU 2 039 874 C1

СИСТЕМА ВЕНТИЛЯЦИИ И ГЕРМЕТИЗАЦИИ КАРТЕРА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ТРАНСПОРТНОГО СРЕДСТВА, снабженного трансмиссией, которое в процессе эксплуатации погружается в воду, содержащая магистраль отсоса газов из картера во впускную систему двигателя, управляющий клапан, установленный в магистрали и снабженный запорным плунжером и корпусом с управляющей камерой, которая диафрагмой, жестко закрепленной в корпусе, разделена на две полости, первая из которых связана с окружающей средой, а плунжер жестко связан с диафрагмой со стороны второй полости, отличающаяся тем, что она снабжена ресивером, подключенным соединительной магистралью к управляющему клапану, магистраль отсоса газов выполнена с ответвлениями, одно из которых сообщено с картером трансмиссии, а другое с второй полостью корпуса, при этом плунжер снабжен пружиной, размещенной в упомянутой полости, и в нем выполнены сквозные соединительные каналы.

Читать еще:  Cdi двигатель громко работает

Измерение давления в цилиндре

Что значит измерение давления в цилиндре?

Измерение давления в цилиндре лежит в основе индицирования давления в цилиндре: один из метрологических методов для измерения и анализа динамики давления внутри цилиндра поршневых двигателей внутреннего сгорания.

Из-за высокого давления измерение давления в цилиндре также называется индицированием высокого давления. Так называемое «индицирование низкого давления» служит дополнительным измерением давления в цилиндре. Его проводят во время фазы изменения заряда для передачи давления в систему впуска и выпуска. Для сопоставления измеренного давления с соответствующей рабочей фазой двигателя внутреннего сгорания при расчете учитывается положение поршня (угол поворота коленчатого вала) или время.

Такие методы позволяют получить информацию, необходимую для научно-исследовательских и опытно-конструкторских работ, а также для настройки работы двигателей. Они также составляют необходимую основу, в рамках которой производители двигателей могут соблюдать все более строгие законы об отработавших газах и оптимизировать эффективность своих двигателей.

Полученная в результате измерения динамика давления представляет важные данные для индицирования давления в цилиндре. Индицирование давления в цилиндре помогает более точно изучить термодинамические процессы во время сгорания и мощность двигателя. Полученные путем проведения данных мер результаты для оптимизации двигателей следующие:

  • Повышение эффективности
  • Увеличение мощности двигателя
  • Сокращение количества выбросов
  • Увеличение срока службы двигателя

Где проводят измерение давления в цилиндре?

Измерение давления в цилиндре применяется для разработки:

  • Двигателей автомобилей, мотоциклов и грузовых транспортных средств
  • Двигателей больших морских судов, например, 2-тактных и 4-тактных дизельных двигателей в судоходной промышленности
  • Стационарных больших двигателей, например, высокопроизводительных двигателей для электростанций

Какая технология используется при измерении давления в цилиндре?

Измерение давления в цилиндре производится при помощи высокотемпературных пьезоэлектрических датчиков давления, которые устанавливаются в головку цилиндра через специальное отверстие. Используются также измерительные свечи зажигания со встроенным высокотемпературным датчиком давления. Так как они просто вкручиваются на место обычной свечи зажигания, нет необходимости просверливать дополнительное отверстие. В дизельных двигателях измерение можно также проводить при помощи специальных адаптеров для свечей накаливания.

Измерительная цепочка дополняется усилителем заряда, системами сбора и обработки данных. В автомобильной сфере используются инновационные системы индицирования, в которых системы сбора и обработки данных объединены в одном устройстве и которые могут использоваться как на испытательных стендах, так и на передвижных.

Почему измерение динамики давления в цилиндре так важно?

Полученная в результате измерения динамика давления представляет важные данные для индицирования давления в цилиндре. В основном поршневые двигатели внутреннего сгорания — это тепловые двигатели: Путем сжигания они превращают химическую энергию, полученную из топливовоздушной смеси, в механическую работу и тепло.

Цель разработчиков — получение максимально высокого показателя механической работы из процесса преобразования, т. е. максимизация эффективности. Особую важность при этом представляют уровень и динамика давления в цилиндре над углом коленчатого вала, который действует на поршень. Эта динамика отображает процесс горения и, следовательно, процесс преобразования энергии в двигателе. Общая механическая работа, полученная за время рабочего цикла или хода, возникает в результате давления и последующих изменений объема камеры сгорания.

Какими параметрами характеризуется динамика давления в цилиндре?

Важными параметрами считаются уровень сигнала (пиковое давление), а также показатель среднего индикаторного давления за рабочий цикл.

Как технология оптического индицирования применяется для измерения давления в цилиндре?

Технология оптического индицирования используется в дополнение к измерению давления в цилиндре и других средств для оптимизации процессов сгорания. Это происходит при помощи высокоразвитых оптических анализаторов, которые с точностью определяют происхождение стука в двигателе, причину процессов перед воспламенением, а также процесс образования сажи в камере сгорания. Эти оптические средства могут быть встроены во все типы свечей зажигания. Другие системы могут объединять снимки со скоростных камер для визуализации быстрых подсистемных процессов, например, процесса впрыскивания и распространения пламени.

Измерение давления в цилиндре лежит в основе измерения и анализа динамики давления внутри цилиндра поршневых двигателей внутреннего сгорания.

Контроль камеры сгорания при помощи KiBox на примере двигателя большой мощности.

Дополнение к измерению давления в цилиндре: Пример оптического контроля камеры сгорания при помощи анализаторов в измерительной свече зажигания.

Оптическая измерительная свеча зажигания с анализаторами.

Принцип работы автомобиля

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

Читать еще:  Что сделать чтобы двигатель ревел

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.

Ссылка на основную публикацию
Adblock
detector