4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление топлива судовые двигателя

Топливный насос высокого давления

То́пливный насо́с высо́кого давле́ния (ТНВД) — неотъемлемый элемент любой системы впрыска топлива, подающей топливо непосредственно в цилиндр поршневого ДВС. По смыслу своего названия ТНВД предназначены для создания в топливной магистрали такого давления, которое по своей величине всегда должно быть гораздо больше давления в цилиндре двигателя, что необходимо для нормальной работы всех подобных систем впрыска топлива. Величина создаваемого давления — в диапазоне от 200 до 2000 бар. Конструктивно всегда является плунжерным насосом объёмного принципа работы с приводом от вращающихся элементов самого ДВС.

Содержание

  • 1 Назначение
  • 2 Разновидности
  • 3 Общее устройство ТНВД
    • 3.1 Принцип действия ТНВД
    • 3.2 Дополнительные агрегаты ТНВД
  • 4 См. также
  • 5 Ссылки

Назначение [ править | править код ]

ТНВД предназначены для подачи в цилиндры под определенным давлением и в определенный момент цикла, точно отмеренных порций топлива, соответствующих данной нагрузке приложенной к коленчатому валу. По способу впрыска различают топливные насосы непосредственного действия и с аккумуляторным впрыском.

В топливном насосе непосредственного действия осуществляется механический привод плунжера, а процессы нагнетания и впрыска протекают одновременно. В каждый цилиндр секция топливного насоса подает необходимую порцию топлива. Требуемое давление распыления создается движением плунжера насоса.

У топливного насоса с аккумуляторным впрыском привод рабочего плунжера осуществляется за счет сил давления сжатых газов в цилиндре двигателя или с помощью специальных пружин. На мощных тихоходных дизелях применяют аккумуляторные топливные насосы с гидравлическими аккумуляторами.

В системах с гидравлическими аккумуляторами процессы нагнетания и впрыска протекают раздельно. Предварительно топливо под высоким давлением нагнетается насосом в аккумулятор, из которого поступает к форсункам. Эта система обеспечивает качественное распыление и смесеобразование в широком диапазоне нагрузок дизеля, но из-за сложности конструкций такой насос широкого распространения не получил. Современные дизели используют технологию с управлением электромагнитными клапанами форсунок от микропроцессорного устройства (такое сочетание называется «common rail»).

Разновидности [ править | править код ]

Топливные насосы высокого давления могут быть рядными, V-образными (многосекционными) и распределительными. В рядных ТНВД насосные секции располагаются друг за другом, и каждая подает топливо в определенный цилиндр двигателя. В распределительных ТНВД, которые бывают одноплунжерными и двухплунжерными, одна насосная секция подает топливо в несколько цилиндров двигателя.

Устройство распределительного ТНВД:

  1. редукционный клапан;
  2. всережимный регулятор;
  3. дренажныйштуцер;
  4. корпус насосной секции высокого давления в сборе с плунжерной парой и нагнетательными клапанами;
  5. топливоподкачивающий насос;
  6. лючок регулятора опережения впрыска;
  7. корпус ТНВД;
  8. электромагнитный клапан выключения подачи топлива;
  9. кулачково-роликовое устройство привода плунжера.

Подачу топлива из бака в ТНВД обеспечивает топливоподкачивающий насос (также называемый топливным насосом низкого давления, ТННД). Он повышает давление топлива на величину около 5 бар. Редукционный клапан поддерживает стабильное давление на входе в насосную секцию ТНВД, которая расположена в корпусе.

Плунжерная пара насосной секции представляет собой золотниковое устройство, регулирующее количество впрыскиваемого топлива и распределяющее его по цилиндрам дизеля в соответствии с порядком их работы. Всережимный регулятор (2) обеспечивает устойчивую работу дизеля в любом режиме, задаваемом водителем с помощью педали акселератора, и ограничивает максимальные обороты коленчатого вала, а регулятор опережения впрыска топлива (6) изменяет момент подачи топлива в цилиндры в зависимости от частоты вращения коленвала.

Топливоподкачивающий насос подает в ТНВД топливо в гораздо большем объёме, чем требуется для работы дизеля. Излишки возвращаются в бак через дренажный штуцер (3). Что касается электромагнитного клапана (8), то он предназначен для остановки дизеля. При повороте ключа в замке зажигания в положение «выключено» электромагнитный клапан перекрывает подачу топлива к плунжерной паре, а значит, и в цилиндры дизеля, это и требуется, чтобы заглушить силовой агрегат.

В зависимости от давления и продолжительности впрыска, а также от величины цикловой подачи топлива существуют следующие модели рядных ТНВД:

  • М (4—6 цилиндров, давление впрыска до 550 бар)
  • А (2—12 цилиндров, давление впрыска до 950 бар)
  • P3000 (4—12 цилиндров, давление впрыска до 950 бар)
  • P7100 (4—12 цилиндров, давление впрыска до 1200 бар)
  • P8000 (6—12 цилиндров, давление впрыска до 1300 бар)
  • P8500 (4—12 цилиндров, давление впрыска до 1300 бар)
  • R (4—12 цилиндров, давление впрыска до 1150 бар)
  • P10 (6—12 цилиндров, давление впрыска до 1200 бар)
  • ZW (M) (4—12 цилиндров, давление впрыска до 950 бар)
  • P9 (6—12 цилиндров, давление впрыска до 1200 бар)
  • CW (6—10 цилиндров, давление впрыска до 1000 бар)
  • H1000 (5—8 цилиндров, давление впрыска до 1350 бар)

Общее устройство ТНВД [ править | править код ]

  • Корпус.
  • Крышки.
  • Всережимный регулятор
  • Муфта опережения впрыска.
  • Подкачивающий насос.
  • Кулачковый вал.
  • Толкатели.
  • Плунжеры с поводками или зубчатыми втулками,
  • Гильзы плунжеров.
  • Возвратные пружины плунжеров.
  • Нагнетательные клапаны.
  • Штуцеры.
  • Рейка.

Принцип действия ТНВД [ править | править код ]

Движение кулачковый вал получает через муфту опережения впрыска и зубчатую передачу от коленчатого вала. При вращении кулачкового вала кулачок набегает на толкатель и смещает его, а он в свою очередь, сжимая пружину, поднимает плунжер. При поднятии плунжера он вначале закрывает впускной канал, а затем начинает вытеснять топливо, находящееся над ним. Топливо вытесняется через нагнетательный клапан, открывшийся за счёт давления, и поступает к форсунке.

В момент движения плунжера вверх винтовой канал, находящийся на нём, совпадает со сливным каналом в гильзе. Остатки топлива, находящиеся над плунжером, начинают уходить на слив через осевой, радиальный и винтовой каналы в плунжере и сливной в гильзе. При опускании плунжера за счёт пружины открывается впускной канал, и объём над плунжером заполняется топливом от подкачивающего насоса.

Изменение количества подаваемого топлива к форсунке осуществляется поворотом плунжеров от рейки через всережимный регулятор. При повороте плунжера, если винтовой канал совпадёт со сливным раньше, то впрыснуто топлива будет меньше. При обратном повороте каналы совпадут позже, и впрыснуто топлива будет больше.

На некоторых ТНВД (например, ТНВД трактора Т-130) часть секций отключается на холостых оборотах, соответственно, отключается и часть цилиндров двигателя.

Дополнительные агрегаты ТНВД [ править | править код ]

Муфта опережения впрыска — служит для изменения угла опережения впрыска в зависимости от оборотов. По принципу действия является механизмом, использующим центробежную силу. Устройство:

  • Ведущая полумуфта.
  • Ведомая полумуфта.
  • Грузы.
  • Стяжные пружины грузов.
  • Опорные пальцы грузов

Принцип действия муфты следующий. При минимальных оборотах грузы за счёт пружин стянуты к центру и положение между муфтами является исходным, при этом угол опережения впрыска находится в пределах отрегулированного параметра. При увеличении оборотов центробежная сила в грузах возрастает и разводит их, преодолевая сопротивление пружин. При этом муфты поворачиваются относительно друг друга и угол опережения впрыска увеличивается.

Всережимный регулятор — служит для изменения количества подачи топлива в зависимости от режимов работы двигателя: запуск двигателя, увеличение/уменьшение оборотов, увеличение/уменьшение нагрузки, остановка двигателя. Устройство:

  • Корпус.
  • Крышки.
  • Державка.
  • Грузы.
  • Муфта.
  • Рычаги.
  • Скоба-кулисы.
  • Регулировочные винты.
  • Оттяжные пружины.

Принцип действия регулятора следующий:

  • Запуск двигателя: перед запуском рейка за счёт пружины находится в положении максимальной подачи топлива, поэтому при запуске в двигатель подаётся максимальное количество топлива. Это способствует быстрому запуску. Как только двигатель начнёт развивать обороты, и центробежная сила в грузах начнёт расти, они, преодолевая сопротивление пружин, начнут расходиться в стороны и внутренними своими рычагами давить на муфту, которая будет воздействовать на рычаг, а рычаг будет тянуть рейку в сторону уменьшения подачи топлива. Обороты установятся в соответствии с натягом пружин.
  • Увеличение оборотов: при нажатии на педаль «газа» натягивается пружина, которая действует на рычаг рейки и муфту. Муфта и рейка смещается, при этом преодолевается центробежная сила в грузах. Рейка смещается в сторону увеличения подачи топлива, и обороты растут.
  • Увеличение нагрузки — при увеличении нагрузки и неизменном положении педали «газа» обороты снижаются, центробежная сила в грузах тоже. Грузы складываются и дают возможность сместиться муфте, рычагу и рейке в сторону увеличения подачи топлива. При снижении нагрузки обороты начинают увеличиваться, центробежная сила в грузах тоже, грузы начинают расходится и внутренними рычагами смещать муфту, рычаг и рейку в сторону уменьшения подачи топлива. Обороты при этом прекращают расти.
  • Остановка двигателя — при остановке двигателя поворачивается скоба, кулиса скобы воздействует на рычаг, а рычаг — на рейку. Рейка перемещается настолько в сторону уменьшения подачи, что подача прекращается, и двигатель останавливается
Читать еще:  Что значит неисправный двигатель

Топливные насосы судового дизеля, принцип действия

Назначение топливных насосов — отмерить необходимую порцию топлива и подать его в цилиндр двигателя через форсунку в определенное время под нужным давлением.

Давление впрыска зависит от вида смесеобразования и системы впрыска и колеблется от 250 до 800 бар.

Существуют две системы впрыска: косвенная и непосредственная. При косвенной системе топливо насосом подается в толстостенную трубу-аккумулятор. Специальные дозирующие устройства сообщают аккумуляторную трубу с форсунками цилиндров в момент подачи топлива. При непосредственной системе впрыска для каждого цилиндра устраивают отдельный топливный насос, связанный с форсункой форсуночной трубкой.

Все топливные насосы современных дизелей — плунжерного типа и классифицируются по способу регулирования количества подаваемого в цилиндр топлива: клапанные, золотниковые, аккумуляторные. При клапанном распределении специальные клапаны, один или два, в определенное время сообщают надплунжерное пространство с перепускными каналами и отсекают подачу топлива. У золотниковых топливных насосов отсечку осуществляет сам плунжер, который сообщает в определенное время надплунжерное пространство с перепускным каналом. У клапанных и золотниковых насосов подача топлива осуществляется за счет набегания кулачной шайбы на толкатель плунжера, а заполнение надплунжерного пространства — за счет пружины, которая перемещает плунжер вниз при сбегании кулачной шайбы с толкателя.

У аккумуляторных топливных насосов надплунжерное пространство заполняется топливом под воздействием кулачной шайбы. При этом пружина сжимается и в ней аккумулируется энергия, в момент впрыска пружина заставляет плунжер резко переместиться вверх. Регулировка количества подаваемого топлива осуществляется за счет изменения хода плунжера. Топливные насосы аккумуляторного типа не нашли широкого применения в дизелях.

Если в начале хода плунжера топливо через открытый клапан у клапанных насосов или через специальный канал у золотниковых насосов идет на перепуск, то считают, что регулировка количества подаваемого топлива осуществляется в начале подачи (или началом подачи). Если топливо в начале подачи идет к форсунке, а в конце подачи — на перепуск, то такие насосы регулируют концом подачи. Очень часто насосы первого типа называют насосами с переменным началом, а насосы второго типа — с переменным концом подачи. В настоящее время как в клапанных, так и в золотниковых насосах регулируются и начало и конец подачи, т. е. топливо перепускается как в начале движения плунжера, так и в конце. Несмотря на явное усложнение конструкции, такие насосы получили наибольшее распространение, так как топливо подается к форсунке только при высоких скоростях движения плунжера, т. е. при максимальных давлениях, этим достигается качественный распыл топлива и хорошее смесеобразование.

Топливный насос двигателей ДР 30/50-3. Насос имеет стальной кованый корпус 11, в котором нажимной гайкой 12 крепится плунжерная втулка 14; пружина 13 для осуществления всасывающего хода опирается на нажимную гайку 12 и тарелку 16. В стальной части смонтированы также нагнетательный клапан 10; всасывающий клапан 8, который выполняет одновременно роль отсечного клапана, закрыт заглушкой 9. Стальной корпус крепится к чугунной станине 18, которую, в свою очередь, устанавливают и крепят на специаль- ной полке дизеля над распределительным валом топливных насосов. В станине 18 насоса смонтированы толкатель 2 и система воздействия на отсечной (всасывающий) клапан 8.

Принцип действия насоса. Заполнение надплун-жерного пространства топливом происходит при сбегании кулачной шайбы с ролика 1 толкателя 2 и движении плунжера 15 вниз за счет пружины 13. Всасывающий клапан 8 при этом находится в открытом состоянии автоматически — за счет разности давления в надплунжер-ном пространстве и всасывающей магистрали. В конце всасывающего движения плунжера, т. е. перед началом нагнетания, всасывающий клапан 8 — через фигурный рычаг 17, эксцентрическую шейку 3 и промежуточный толкатель (4, 5, 6, 7) — поддерживается в открытом состоянии. Таким образом, при набегании кулачной шайбы на ролик 1 толкателя 2 и движении плунжера вверх топливо будет перепускаться через открытый всасывающий клапан 8 во всасывающую магистраль. Перепуск будет продолжаться до тех пор, пока левое плечо фигурного рычага 17, опускаясь вниз, не даст возможность всасывающему клапану 8 перекрыть всасывающую магистраль. В этот момент произойдет отсечка перепуска и топливо, оставшееся в надплунжерном пространстве, пойдет к форсунке. Изменение количества подаваемого топлива осуществляется поворотом рычага 19 и изменением положения эксцентрической шейки 3 валика 20 в пространстве. Очевидно, если шейку перемещать вверх, то зазор между клапаном и его седлом увеличится и на перепуск пойдет больше топлива.

Поскольку топливо перепускается во всасывающую магистраль в начале хода плунжера вверх, то насос имеет переменное начало и постоянный конец подачи. При опускании левого плеча фигурного рычага вниз зазор между клапаном и его седлом уменьшится и количество топлива, подаваемого к форсунке, увеличится.

Определенную подачу топливного насоса можно отрегулировать, изменив длину нижнего толкателя 4 за счет болта 6 и контргайки 5.

Все топливные насосы двигателя связаны между собой через рычаг 19 общей планкой (рейкой), которая, в свою очередь, связана одним концом с постом управления, другим—с регулятором двигателя.

По такому же принципу работают топливные насосы двигателей 8ДР 43/61, а также насосы многих моделей двигателей фирмы «Зульцер».

Топливный насос клапанного типа (рис. 51, б) с регулированием по началу и концу подачи двигателей ДКРН 70/120 (МАН). К стальному корпусу 8 крепится плунжерная втулка 6 (гайкой 7). В корпус также вмонтированы: всасывающий клапан 9 вместе с корпусом, нагнетательные клапаны 10 и 11 в общем корпусе, отсечной клапан 19 в корпусе 20 и демпферное устройство, состоящее из поршня 18, нагруженного пружиной 17. Система воздействия на отсечной клапан, состоящая из фигурного рычага 29, двухрожкового рычага 23, стержня 26 и толкателя 2 облицованного бронзовой втулкой 4, размещена в нижнем чугунном корпусе. Нагнетательный трубопровод 14 подключен к насосу ниппельным соединением.

Принцип действия насоса. При сбегании кулачной шайбы с ролика 1 толкателя 2 пружина 3 перемещает плунжер 5 вниз. В результате этого всасывающий клапан 9 открывается и топливо поступает в надплунжерное пространство. Перед началом поступательного хода плунжера вверх левое плечо фигурного рычага 29 находится в нижнем крайнем положении, а правое плечо — через упорный винт 25, двухрожковый рычаг 23 и промежуточный стержень 26 — поддерживает отсечной клапан 19 в открытом положении. Таким образом в начале нагнетания топливо по перепускным каналам А и Б пойдет во всасывающую систему (магистраль). Подача топлива к форсунке начинается в момент появления зазора между упорным винтом 25 и нижним рожком рычага 23, т. е. в момент посадки отсечного клапана 19 в гнездо под действием пружины 16 (упругость которой регулируется болтом 15 с контргайкой). Отсечка в конце подачи произойдет, когда левое плечо фигурного рычага 29, перемещаясь вверх, через упорный сухарь 28 и промежуточный толкатель 26 откроет отсечной клапан 19 и топливо снова пойдет на перепуск. Количество подаваемого топлива изменяют поворотом валиков 27 и 24, связанных между собой зубчатыми секторами; верхний валик системой рычагов, тяг и валиков связан с постом управления и регулятором. Шейки, на которых качаются рычаги 23 и 29, выполнены эксцентрично относительно осей валиков, поэтому при повороте рычаги опускаются вниз или перемещаются вверх. При перемещении рычагов вниз зазор между отсечным клапаном 19 и его седлом уменьшается, а между промежуточным толкателем и упорным сухарем 28 увеличивается. В результате происходит ранняя посадка клапана в гнездо и позднее его открытие, и тогда больше топлива поступает в цилиндр. Для уменьшения подачи топлива рычаг перемещают вверх, и зазор между клапаном и седлом увеличивается, а зазор между упорным сухарем и промежуточным толкателем уменьшается, в результате чего клапан по времени больше открыт и к форсунке поступает малая доза топлива. Такой способ регулирования дает возможность использовать на малой частоте вращения наибольшие скорости движения плунжера и автоматически изменять угол опережения подачи топлива в цилиндр в зависимости от частоты вращения коленчатого вала дизеля.

Индивидуальную регулировку насосов производят изменением длины промежуточного толкателя 26 при помощи гайки 22 и контргайки 21, а также упорным винтом 25. Мгновенное отключение насоса осуществляют индивидуальным открытием всасывающего клапана — через штифт 12 и кнопку 13.

Читать еще:  405 двигатель карбюраторный характеристики

К недостаткам насоса следует отнести сложность конструкции и регулирования, поэтому фирма МАН и ее лицензиаты на последних моделях дизелей ряда ДКРН 70/120 устанавливают золотниковые топливные насосы.

Топливные насосы золотникового типа в настоящее время получили наибольшее применение в судовых дизелях. От других насосов их отличает прежде всего простота конструкции, возможность регулирования начала и конца подачи, длительная работа без индивидуального регулирования, так как у них отсутствует отсечной клапан со сложной системой привода.

Принцип действия топливного насоса (рис. 52, а). Плунжерная втулка 2 топливного насоса запрессована в общий корпус (для небольших насосов). Топливоподкачивающий насос подает топливо в приемную полость вокруг плунжерной втулки. Когда плунжер 1 находится в н. м. т. топливо заполняет надплунжерное пространство насоса через отверстия 3 и 4. При движении плунжера вверх до перекрытия впускных отверстий 3 и 4, топливо перетекает в приемную полость. После перекрытия отверстий плунжером начинается подача топлива к форсунке. Момент отсечки наступает тогда, когда винтовая кромка 5 на плунжере соединяет надплунжерное пространство с отверстием 3. С этого момента, несмотря на поступательное движение плунжера вверх, топливо будет перетекать в приемную полость насоса. Уменьшение количества подаваемого топлива ocуществляют поворотом плунжера против часовой стрелки, при этом надплунжерное пространство раньше соединится с приемной полостью насоса. Для выключения насоса плунжер поворачивают настолько, чтобы фрезерованный паз 6 оказался против перепускного канала 3— и надплунжерное пространство соединяется с приемной полостью насоса во время всего хода плунжера вверх.

У топливных насосов с нижним расположением винтовой кромки регулируется конец подачи. Если верхнюю кромку плунжера сделать винтовой, а нижнюю — прямой, то начало подачи будет переменным,а конец постоянным, и, наконец, если обе кромки выполнить винтовыми, то и начало и конец подачи будут переменными (рис. 52, б).

Конструкция топливного насоса золотникового типа мощного судового дизеля 8ДКРН 74/160-2 (БМЗ) изображена на рис. 53. На кронштейне 1, который крепится к остову дизеля, установлен чугунный корпус 4. На корпус 4 установлена промежуточная втулка 9. К ней через фланец 22 и стойку 11 крепится стальной кованый корпус 19. В корпусе 19 запрессована плунжерная втулка 17, в которой находится плунжер 15. Поступательное движение плунжера вверх осуществляется от кулачной шайбы 2 через промежуточный ролик 3, ролик 5 толкателя и толкатель 6. Возвратный ход плунжера, находящегося длительное время в верхнем положении, происходит при сбегании промежуточного ролика 3 с кулачной шайбы 2 под действием пружин 7 и 8. Топливо подается к насосу высокого давления от топливоподкачивающего насоса по трубе 16. При движении плунжера 15 вниз топливо через всасывающий клапан 18 попадает в надплунжерное пространство (необходимость установки всасывающего клапана вызвана незначительным временем, отведенным на заполнение надплунжерного пространства из-за специального профиля кулачной шайбы). При движении плунжера вверх всасывающий клапан 18 закрывается и топливо но трубе 27 подается к двум форсункам цилиндра.

Для отсечки топлива на плунжере выфрезеровано два паза, заканчивающихся винтовыми кромками, которые в определенный момент соединяют нагнетательную полость с приемной.

Для предотвращения резких колебаний давления при перепуске топлива в приемную полость насоса предусмотрено демпферное устройство 21.

Наличие двух отсечных кромок и двух перепускных отверстий снимает с плунжера боковые нагрузки, что предотвращает односторонний износ плунжера и втулки, характерный для насоса с одним отсечным каналом.

Изменение количества топлива, подаваемого за один впрыск, осуществляется поворотом плунжера 15 — через крестовину плунжера 12, поворотную втулку 13 и цапфу 14.

Цапфы всех насосов связаны между собой и с постом управления двигателя системой тяг и рычагов. При повороте плунжера 15 отсечные кромки раньше или позднее соединяют надплунжерное пространство с приемной полостью насоса и при этом изменяется полезный ход плунжера. Регулирование количества подаваемого топлива осуществляется по концу подачи.

Так как производительность топливоподкачивающего насоса выше максимального расхода топлива топливными насосами высокого давления, то часть топлива по трубе 20, снабженной невозвратным клапаном, отводится к расходным цистернам. При такой схеме обеспечивается постоянная циркуляция топлива через насосы, что предотвращает образование газовых пробок.

Изменение угла опережения подачи топлива в цилиндр осуществляется поворотом эксцентрика 23, который перемещает посредством рычага 24 ролик 3 и изменяет время начала поступательного хода плунжера и, следовательно, время начала подачи. Нужно заметить, что при таком способе регулировки угла опережения подачи топлива изменяется в сторону ухудшения время начала подачи топлива при работе двигателя на задний ход, так как для переднего и заднего хода используется одна кулачная шайба и реверс двигателя осуществляется за счет углового поворота распределительного вала в сторону требуемого вращения коленчатого вала. Для периодического контроля давления впрыска нагнетательную полость можно сообщить через клапан 25 с манометром 26. Выключение насоса осуществляют тягой 10.

Система смазки насосов высокого давления — индивидуальная.

Отсутствие нагнетательного клапана в насосе обеспечивает отсечку топлива при высоком давлении, что обусловливает быструю посадку иглы форсунки и отсутствие дополнительного вспрыска и подтекания топлива.

ВОДНЫЙ ТРАНСПОРТ

ИННОВАЦИИ НА ГРЕБНЕ ВОЛНЫ

СПГ – экологически чистое и экономичное судовое топливо будущего.

Новые правила и нормативы, регулирующие выбросы сернистых соединений в Балтийском и Северном морях, и их распространение на Средиземное море, побережье США и, возможно, некоторые азиатские страны стали мощным стимулом инноваций и инвестиций в СПГ в судостроении.

Все ключевые игроки этой отрасли начали инвестировать в технологии, инфраструктурные объекты, двухтопливные и газовые двигатели для судов и барж, а также в новые бункеровочные СПГ – суда.

Все модели погружных центробежных насосов Vanzetti Engineering удовлетворяют требованиям типового одобрения и, в соответствии с их габаритами (пропорциональными расходу) и количеством ступеней (пропорциональным величине напора), могут использоваться как:

  • Зачистные насосы на СПГ – танкерах и бункеровочных судах
  • Рабочие или резервные насосы для подачи газа в судовые двигатели низкого давления с перепадом давления до 20 бар
  • Грузовые насосы от малой до средней размерности
  • Насосы для бункеровки с судна на судно
  • Бустерные насосы/ПРГУ с перепадом давления до 55 бар

В соответствии с потребностями Заказчика такие насосы могут быть смонтированы:

  • На днище резервуара для хранения СПГ
  • В криостатах с вакуумной изоляцией, устанавливаемых у основания резервуаров для хранения СПГ

В обоих случаях конструкция насосов серии ARTIKA в бессальниковом исполнении с непрерывно смазываемыми СПГ подшипниками позволяет сохранять криогенную температуру за счет:

  • быстрого и эффективного запуска и останова
  • незначительной потребности в техобслуживании

Насосы высокого давления в судостроении

Недавно Vanzetti Engineering инвестировала в разработку новой модели VT–3: это новый поршневой насос, спроектированный и изготовленный в соответствии с требованиями типового одобрения.

Насос VT–3 может применяться в качестве насоса высокого давления для подачи газа в двигатели MAN MEGI:

  • В конфигурации TRIPLEX
  • Производительность до 14 m 3 /час
  • Давление до 350 бар

Насос VT–3 может поставляться на опорной раме, имеющей типовое одобрение и полностью укомплектованной частями, необходимыми для надежной и безопасной эксплуатации насоса, в том числе датчиками, КИП и запорной арматурой.

БУНКЕРОВОЧНЫЕ СУДА

Погружные насосы ARTIKA применяются для бункеровки СПГ с различной производительностью и напором.

Например, модель ARTIKA 300–2S может обеспечивать эффективную и надежную перекачку СПГ с производительностью до 250 м 3 /ч с максимальным перепадом давления до 12 бар. Все насосы Vanzetti Engineering соответствуют требованиям типового одобрения в соответствии с классом судна согласно проекту.

Безопасность и высокая надежность – наши ключевые принципы проектирования.

ТАНКЕРЫ СПГ

Многочисленные проекты, реализованные в судостроительном секторе, и десятки заказов свидетельствуют о том, что погружные насосы ARTIKA являются оптимальным решением для клиентов, которым требуются:

  • Газотопливные насосы
  • Spray Pumps
  • Зачистные насосы
  • Грузовые насосы

для малых, средних и крупных танкеров СПГ.

В зависимости от требований модели ARTIKA могут перекачивать СПГ с разной производительностью – от очень низкой до очень высокой и с перепадом давления, значения которого могут варьироваться от минимального до почти 20 бар, необходимых для двухтактных двигателей XDF.

Компетентность наших инженеров позволяет быстро изучить требования заказчиков и оперативно предоставить всю техническую документацию и характеристические кривые, необходимые на этапе рассмотрения предложения на поставку насосов.

Читать еще:  603 двигатель холостой ход

Если заказчику необходим газотопливный насос для танкера СПГ, оснащенного двухтактным двигателем MAN MEGI, наши модели VT–3 являются идеальным решением с точки зрения производительности, безопасности, надежности и незначительной потребности в техобслуживании.

В зависимости от величины потребления двигателя насос VT–3 может выпускаться в конфигурации Simplex, Duplex или Triplex и монтироваться на опорной раме, оснащенной всеми датчиками, приборами и принадлежностями для обеспечения надежной и безопасной эксплуатации.

Давление топлива судовые двигателя

Правила технической эксплуатации дизелей

  • Общие положения
  • Подготовка и ввод дизеля в действие
  • Техническое использование дизеля во время работы и обслуживание при бездействии
  • Техническое использование дизеля на режимах и в
    условиях, отличающихся от нормальных
  • Приложение 5
  • Приложение 6
  • Приложение 7
  • Приложение 8
  • Приложение 9
  • Приложение 10
  • Приложение 11
  • Приложение 12
  • Приложение 13
  • Приложение 14
  • Приложение 15
  • Приложение 16
  • Приложение 17
  • Приложение 18
  • Приложение 19
  • Приложение 20

Контроль за работой и регулировка дизелей

5. Контроль за работой и регулировка дизелей

5.1. Во время работы дизелей мощностью 220 кВт и выше необходимо контролировать следующие основные параметры:

  1. среднее индикаторное давление при наличии на дизеле индикаторного привода;
  2. давление в конце сжатия p ; c
  3. максимальное давление сгорания p ; z
  4. среднее давление по времени p ; t
  5. давление продувочного (наддувочного) воздуха p ; k
  6. температуру выпускных газов t ; r
  7. удельный расход топлива g ; e
  8. удельный расход масла g (для дизелей с раздельной системой m смазки — удельный расход на смазку втулок рабочих цилиндров и циркуляционную смазку). Кроме указанных, следует также контролировать параметры в соответствии с утвержденной формой машинных журналов и журналов индицирования.

5.2. Периодичность индицирования дизеля и определения основных параметров устанавливается механико — судовой службой (МСС), либо инженерно — технической службой (ИТС) или специалистом судовладельца в соответствии с требованиями заводской инструкции и в зависимости от типа дизеля, его технического состояния, условий эксплуатации, но не реже чем через каждые 400 ч работы.

5.3. Индицирование дизелей, кроме сроков, установленных службой судовладельца (МСС, ИТС), должно проводиться в следующих случаях:

  1. при обнаружении ненормальной работы одного или нескольких цилиндров;
  2. после регулировки топливоподачи, замены форсунки или топливного насоса, после ремонта или замены деталей движения и замены цилиндровой крышки или втулки;
  3. после перехода на новый сорт топлива.

5.4. Результаты индицирования дизелей, оборудованных индикаторными приводами, должны быть занесены в журнал индицирования главного двигателя. Результаты теплотехнического контроля дизелей мощностью 220 кВт и выше, не имеющих индикаторных приводов, заносятся в журнал теплотехнического контроля двигателей. Рабочий процесс дизелей мощностью менее 220 кВт необходимо контролировать по параметрам, определяющим их тепловую нагрузку.

5.5. Для проверки распределения нагрузки по цилиндрам и качества регулировки контролируют следующие параметры работы дизелей (по цилиндрам):

  1. температуру выпускных газов по штатным термометрам;
  2. разность частоты вращения при последовательном отключении цилиндров в случае отсутствия индикаторных кранов;
  3. среднее давление по времени p, замеряемое с помощью t пиметра, или максимальное давление сгорания p, замеряемое z максиметром или индикатором, при наличии индикаторных кранов;
  4. среднее индикаторное давление p при наличии индикаторного i привода.

5.6. Контроль за параметрами работы дизеля должен производиться на установившемся номинальном режиме или близком к нему, но не менее 85% номинального.

5.7. Температура выпускных газов по цилиндрам и в выпускном коллекторе в процессе регулировки должна измерятьсятермоэлектрическими комплектами или ртутными термометрами, предварительно протарированными по заведомо исправным.

5.8. Давление в конце сжатия p в цилиндре следует измерять c согласно инструкции по эксплуатации завода — изготовителя. При отсутствии указаний в инструкции измерение нужно производить при выключенном топливном насосе и мощности дизеля, не превышающей 75% номинальной. На дизелях, где передача крутящего момента производится через упругие муфты, для предупреждения разрушения резиновых элементов муфт от неравномерной работы дизеля необходимо определять давление в конце сжатия p по развернутой индикаторной диаграмме. c

5.9. Максимальное давление сгорания p определяется с помощью z индикатора (снятие гребенок) или максиметра.

5.10 . Индикаторы давления следует применять для дизелей, номинальная частота вращения которых не превышает допустимую, оговоренную в инструкции по эксплуатации индикатора. В случае отсутствия таких указаний для дизелей с частотой вращения до 500 об./мин. допускается применять индикаторы со спиральной пружиной, свыше 500 об./мин. — максиметры. С целью автоматического диагностирования и контроля работы дизелей (исходя из целесообразности) следует устанавливать и применять судовые комплексы типов: «NK-5», «Ритм — Дизель», «Дизель — Интеллект» и др.

5.11. Расход циркуляционного масла на дизель контролируется по уровню масла в картере (для дизелей с мокрым картером) или в сточной масляной цистерне (для дизелей с сухим картером). Расход цилиндрового масла на дизель контролируется по уровню масла в бачке лубрикатора (для дизелей с лубрикаторной смазкой). Определение расхода производится путем долива заранее измеренного количества масла до первоначального уровня в картере, или в сточной цистерне, или в бачке лубрикатора после продолжительной работы (24 — 48 ч) на установившемся режиме. Доливку масла в картер или в сточную цистерну следует производить не ранее чем через час после остановки дизеля. Удельный расход масла (в г/кВт.ч) подсчитывается по формуле: 3 t g = 10 Vро / N t, m 4 e где: V — объемный расход масла (по замеру) на двигатель, л; t ро — плотность масла при температуре замера, г/куб. см; 4 t — продолжительность замера, ч; N — эффективная мощность, развиваемая двигателем в момент e определения расхода масла, кВт.

5.12 . Расход топлива на дизель определяется с помощью специальных тарированных мерных баков, расходомеров или расходных цистерн, оборудованных шкалой тарировки. При нормальном техническом состоянии дизеля расход топлива должен соответствовать значениям, гарантируемым заводом — изготовителем. Методика определения расхода топлива приводится в Приложении 6.

5.13 . При определении мощности дизелей следует руководствоваться методикой, приведенной в Приложении 7.

5.14 . На номинальном режиме работы значения параметров каждого цилиндра не должны превышать (в %):

  • среднее индикаторное давление p +/- 2,5 i
  • максимальное давление сгорания p +/- 3,5
  • температура выпускных газов t +/- 5 r
  • давление в конце сжатия p +/- 2,5 c
  • среднее давление по времени p +/- 3. t

Отклонение значений указывает на неравномерность распределения нагрузки.

5.15. Регулировка дизеля должна производиться периодически в зависимости от состояния установки, типа дизеля и в соответствии с указаниями инструкции по эксплуатации и МСС (ИТС) судовладельца. Запрещается производить регулировку главных дизелей на неустановившихся режимах работы (например, при волнении моря свыше 3 баллов, при изменении курса судна). Результаты регулировки заносятся в журналы теплотехнического контроля или индицирования, а в машинном журнале делается соответствующая запись о проделанной работе.

5.16. Перед регулировкой дизеля необходимо:

  1. убедиться в исправности контрольно — измерительных и регистрирующих приборов, проверить и отрегулировать зазоры в приводах топливных насосов и в механизме газораспределения;
  2. проверить положение нулевой подачи топлива насосами, спрессовать форсунки, проверив давление и качество распыла.

5.17. Регулировка дизеля производится при обнаружении:

  1. неравномерности распределения нагрузки по цилиндрам — изменением количества топлива, подаваемого насосами;
  2. отклонений максимального давления сгорания от рекомендуемых инструкцией по эксплуатации значений — изменением момента начала подачи топлива по цилиндрам.

5.18 . Последовательность регулировки и устранение отклонений параметров должны выполняться согласно инструкции по эксплуатации. При отсутствии указаний в инструкции регулировка производится: при низком p и высоких t — увеличением угла опережения z r подачи топлива; при высоком p и низких t — уменьшением угла опережения z r подачи топлива; при высоком p и высоких t — уменьшением угла опережения и z r цикловой подачи топлива; при низком p и низких t — увеличением угла опережения и z r цикловой подачи топлива.

5.19. Предварительная регулировка дизеля производится при нагрузке, равной 25% номинальной. На данном режиме проверяют только наличие вспышек во всех цилиндрах. Затем на установившемся тепловом режиме и нагрузке, равной 50% номинальной, определяют максимальное давление сгорания p. Если значения p в отдельных z z цилиндрах будут в пределах, указанных в инструкции завода — изготовителя для этого режима, то переходят на режим 75% номинальной нагрузки. На этом режиме определяют пять основных параметров каждого цилиндра дизеля p, p, t, p, p. Если все z c r i t параметры будут в пределах, указанных в инструкции по эксплуатации для этого режима, то производят окончательную регулировку дизеля на режиме номинальной нагрузки и частоты вращения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector