Что является топливом для реактивных двигателей
Ту-155: начало криогенной авиации
15 апреля 1988 года совершил первый полет самолет Ту-155, силовая установка которого работала на криогенном топливе – жидком водороде. Не имевший в то время мировых аналогов двигатель НК-88 был разработан на самарском двигателестроительном предприятии «Кузнецов». Инициатива же создания самого самолета, использовавшего криогенный вид топлива вместо авиационного керосина, принадлежала конструкторскому бюро «Туполев».
В середине 1970-х годов СССР, как и весь мир, испытывал энергетический кризис из-за дефицита добычи нефти. Поэтому активно обсуждалась возможность применения альтернативных видов топлива. Пожалуй, для XXI века с его экологическими проблемами эта тема еще более актуальна. Об истории создания уникального Ту-155 и криогенном будущем авиации – в нашем материале.
Рожденный «Холодом»
Прошедший в 2019 году авиасалон МАКС, помимо презентации целого ряда новинок отечественного военного и гражданского авиастроения, предоставил отличную возможность в прямом смысле прикоснуться к прошлому отечественной авиации. На статической стоянке аэродрома Жуковский была организована историческая экспозиция легендарных советских реактивных самолетов. Одно из центральных мест там занял Ту-155 – экспериментальный самолет с двигателем на криогенном топливе.
«Криогенный» переводится как «рожденный холодом». Речь идет о топливе, охлажденном до очень низких температур, когда газ переходит в жидкое состояние. Первым газом, с которым стали работать создатели Ту-155, стал водород. После самолет успел полетать и на сжиженном природном газе (СПГ).
Самолет Ту-155 на МАКС-2019
Научные работы по конструированию Ту-155 начались еще в 1970-е годы. Тогда в мировой энергетике назревал кризис – газовое топливо стало цениться дороже, чем нефтяное. Потребление нефти продолжало снижаться. Кстати, по подсчетам геологов, потенциальные запасы газа на планете в десятки раз превосходят запасы угля и нефти. При этом наша страна занимает первое место в мире по разведанным запасам природного газа.
В 1970-е годы советская Академия наук разработала программу НИОКР по внедрению водородной энергетики в народное хозяйство. В авиапроме эта программа получила соответствующее название – «Холод». Предусматривалось создание авиационных двигательных установок на криогенном топливе. Кроме экологической составляющей, был и другой пункт в пользу чистого топлива – развитие гиперзвуковых и авиационно-космических систем. В те годы вовсю шла работа над созданием «Бурана», а топливом одной из ступеней ракеты-носителя космического челнока были жидкие кислород и водород.
В середине 1980-х годов специалисты ОКБ А.Н. Туполева приступили к созданию самолета – летающей лаборатории, работающего на криогенном топливе. Базой для экспериментального лайнера стал пассажирский Ту-154.
В качестве авиационного топлива был использован жидкий водород – почти идеальное экологически чистое топливо выделяет при сгорании в основном воду и незначительное количество окислов азота. По теплотворной способности водород втрое превосходит традиционный авиационный керосин. Но в то же время водород взрывоопасен, хранить и транспортировать его можно только в жидком состоянии при очень низких температурах, близких к абсолютному нулю (–273 °С). И это представляет собой серьезную проблему.
«При проектировании летающей лаборатории пришлось существенно изменить компоновку Ту-154 и решить целый ряд сложнейших технических задач. В хвостовой части фюзеляжа, где располагался пассажирский салон, был оборудован герметичный отсек, и в нем установлен криогенный бак на 20 куб. метров жидкого водорода с экранно-вакуумной теплоизоляцией, которая долгое время сохраняет в баке температуру ниже минус 253 градусов по Цельсию», – рассказывает заместитель генерального директора ПАО «Туполев» по проектированию, НИР и ОКР Валерий Солозобов, принимавший непосредственное участие в создании Ту-155.
Экспериментальный турбореактивный двухконтурный двигатель НК-88 на Ту-155. Фото: Андрей Сдатчиков / Airwar.ru
Правый двигатель самолета заменили модифицированным двигателем НК-88, работающим на жидководородном топливе. Для его подачи вместо привычного насоса установили высоконапорный турбонасосный агрегат, наподобие тех, что используются в ракетных двигателях. Для обеспечения надежной взрыво- и пожаробезопасности самолета, из отсека с криогенным баком убрали почти всю электропроводку – источник возможного образования искры. Спроектировали и смонтировали дренажную систему, которая отводит из бака пары водорода на безопасное расстояние от двигателей и источников электричества. Всего было сконструировано более 30 дополнительных бортовых систем.
15 апреля 1988 года экипаж летчика-испытателя Владимира Севанькаева поднял в небо экспериментальный самолет Ту-155 с тремя двигателями, один из которых работал на жидком водороде. Это считается первым в мире полетом на криогенном топливе.
Водород и «синдром Гинденбурга»
На практике, при всех своих достоинствах, криогенная авиация оказалась не таким уж простым проектом. Водород заслужил репутацию самого взрывоопасного топлива. Довольно длительное время имела место своего рода водородная боязнь. Этот феномен даже получил имя – «синдром Гинденбурга» в память о гибели в 1937 году дирижабля «Гинденбург», наполненного водородом. Такая переоценка реальной опасности водорода сдерживала развитие водородной энергетики. При этом недооценивать опасность водорода также не стоит.
Экспериментальные полеты Ту-155 дали бесценный опыт для дальнейшего усовершенствования авиационных криогенных топливных систем. Следующим этапом проекта Ту-155 стало его переоборудование на более удобное в эксплуатации топливо – сжиженный природный газ.
Система заправки для самолета Ту-155
«Как и водород, СПГ значительно меньше загрязняет окружающую среду, его теплотворная способность на 15% выше, чем у авиационного керосина. Водород взрывоопасен, хранить и транспортировать его можно только в жидком состоянии при очень низких температурах, близких к абсолютному нулю, что представляет очень серьезную проблему. Хранить СПГ в жидком виде гораздо проще, температура может быть около –160 °С, что почти на 100 градусов выше, чем при хранении водорода», – поясняет Валерий Солозобов.
В январе 1989 года летающую лабораторию Ту-155 оснастили криогенным двигателем, работающим на СПГ. Первые же полеты показали, что по сравнению с керосином удельный расход топлива снижается примерно на 15%, а экономичность воздушного лайнера существенно возрастает.
Всего на Ту-155 было совершено 70 полетов: в пяти из них топливом служил водород, в остальных – сжиженный природный газ. Все полеты прошли без отказов самолетного криогенного комплекса и еще раз доказали, что расход топлива по сравнению с керосином меньше, при этом сопло двигателя остается чистым.
Люди, научившие не бояться водорода
Руководство страны высоко оценило достижение специалистов ОКБ А.Н. Туполева и смежных предприятий авиационной отрасли, участвующих в разработке Ту-155. Лауреатами премии Правительства Российской Федерации стали 15 участников работ, многие другие специалисты за участие в этой непростой работе удостоены высоких званий и правительственных наград.
Неоценимый вклад в создание и развитие отечественной авиации на криогенном топливе внесло огромное количество специалистов разного уровня. Куратором проекта в Министерстве авиационной промышленности был Леонид Михайлович Шкадов – замминистра авиапромышленности. Алексей Андреевич Туполев выступил инициатором проекта и его дальнейшего развития. В создании Ту-155 также принял участие великий инженер, академик Кузнецов Николай Дмитриеви ч .
Душой Ту-155, его руководителем в ОКБ А.Н. Туполева был Владимир Александрович Андреев. За силовую установку отвечал Валентин Всеволодович Малышев, внесший огромный вклад в успех благодаря глубоким знаниям и неуемной энергии. Под руководством будущего гендиректора предприятия «Туполев» Валентина Тихоновича Климова была разработана уникальная программа обеспечения безопасности, позволившая провести все работы без серьезных происшествий. Вячеслав Дмитриевич Борисов руководил созданием наземного комплекса и испытательных стендов на летной базе в Жуковском. Валерий Иванович Солозобов отвечал за производство, подготовку летных испытаний в КБ и разработку конструкции водородного бака, который был изготовлен под руководством Рудольфа Зашляпина на криогенном производстве Уралвагонзавода.
Владимир Александрович Андреев, руководитель проекта Ту-155 в ОКБ А.Н. Туполева
Также в работе активно участвовал высококвалифицированный состав ученых и инженеров Минобороны РФ, к примеру специальные испытания Ту-155 проводились на базе аэродрома Чкаловский. Также нельзя не сказать о вкладе выдающихся академиков Николая Павловича Лаверова, Анатолия Петровича Александрова, Валерия Алексеевича Легасова, ученых из Дубны Александра Григорьевича Зельдовича и Леонида Голованова, научивших не бояться водорода, а навсегда полюбить эту фантастическую жидкость. Кстати, система газового контроля для самолета была разработана в московском Опытно-конструкторском бюро автоматики (ОКБА) под руководством Юрия Михайловича Лужкова, будущего мэра Москвы.
В целом сформировалась замечательная команда из разных отечественных научных и производственных структур, создавшая самолет, который, как отмечают многие эксперты отрасли, сильно опередил свое время. К сожалению, уровень технологий того времени не позволил полноценно продолжить работу над данным проектом, но этот Ту-155 стал наглядным доказательством самой возможности создания криогенной авиации.
Криогенное будущее авиации
Разработка и применение новых типов источников энергии остается важной проблемой авиации в XXI веке, над решением которой работают специалисты и энтузиасты нового поколения. Звучат различные яркие идеи. Несколько лет назад калининградский школьник Сергей Горобец рассказал о своей электронной модели двигателя на криогенном топливе во время всероссийского открытого урока, который проводил Владимир Путин на площадке форума «ПроеКТОриЯ». Тогда юным изобретателем заинтересовались специалисты, а Госкорпорация Ростех предложила ему бесплатное обучение в одном из восьми вузов страны на выбор. Сейчас Сергей учится в Московском авиационном институте по специальности «Самолетостроение», а форум «ПроеКТОриЯ» посещает уже в качестве эксперта от Ростеха.
Как, какими темпами, на каких технологических основах будет расширяться применение новых типов источников энергии в авиации – покажет время. Предстоит еще многое сделать по разработке специальных бортовых систем и в сфере развития наземной инфраструктуры.
Исследователи могут ошибаться на десятки лет, но запасы нефти в какой-то момент, вероятнее всего, будут исчерпаны. Та страна, ученые и специалисты которой первыми найдут эффективные решения в области неисчерпаемых источников энергии, получит преимущество.
Одно остается бесспорным: у России имеется уникальный опыт в этой области, и наша страна всегда была богата на талантливых ученых и изобретателей.
Кровеносная система авиации
Каждый день в мире выполняется более 100 тысяч авиарейсов. В год мировая авиация потребляет около 300 млн тонн топлива. Эти цифры прекрасно отражают масштаб и сложность системы авиатопливообеспечения. Системы, от надежной работы которой во многом зависит безопасность миллионов людей, пользующихся авиатранспортом
Чем заправляют самолеты
Топливо для самолетов бывает двух видов. Поршневые двигатели, которыми оборудуются небольшие самолеты и вертолеты, работают на бензине — так же, как и автомобильные моторы. Правда, по составу такое топливо несколько отличается от автомобильного. Газотурбинные двигатели (турбореактивные и турбовинтовые), которыми сегодня оснащены практически все коммерческие воздушные суда, потребляют топливо для реактивных двигателей, которое также называют авиакеросином.
Основная марка авиакеросина, которым в России заправляют почти все пассажирские, транспортные и военные дозвуковые самолеты и большую часть вертолетов — ТС-1 — топливо сернистое. Оно вырабатывается из нефти с высоким содержанием серы.
В Европе основа системы авиатопливообеспечения — керосин Jet A-1. Он считается более экологичным как раз за счет меньшего содержания серы — при его производстве прямогонная керосино-легроиновая фракция полностью проходит процедуру гидроочистки. Российский авиакеросин — это смесь гидроочищеного и неочищенного прямогонного дистиллятов. В целом же это аналоги — более того, отечественный продукт может использоваться при гораздо более низких температурах, чем «Джет». ТС-1 сегодня наравне с Jet A-1 включен в международные документы и руководства по эксплуатации не только самолетов российского производства, но и лайнеров семейств Airbus и Boeing (правда, только выполняющих полеты по России). Но это авиакеросин для гражданской авиации, не предназначенный для сверхзвуковых самолетов.
Основное авиатопливо для сверхзвуковой авиации — РТ. При его производстве с помощью гидроочистки из нефтяного дистиллята удаляются агрессивные, а также нестабильные соединения, содержащие серу, азот и кислород. При этом повышается термическая стабильность топлива, что крайне важно при полетах на сверхзвуковых скоростях, когда за счет трения о воздух нагревается весь корпус самолета, а вместе с ним и топливо в баках.
Разумеется, РТ, обладающее такими характеристиками, можно использовать и в обычных воздушных судах вместо ТС-1. Для самых же скоростных самолетов применяется авиакеросин Т-6, обладающий еще большей термостабильностью и повышенной плотностью.
Что касается авиабензина, то это, по сути, автомобильное моторное топливо, но с улучшенными свойствами, влияющими на надежность работы двигателя. Именно потребность в повышении детонационной стойкости, октанового числа, сортности, обеспечивающих запас динамических характеристик и надежности, заставляет производителей авиабензина добавлять в него тетраэтилсвинец (этилировать). Из-за токсичности эта присадка давно запрещена при производстве автомобильного бензина, но двигатель самолета работает в гораздо более напряженном режиме, а создать неэтилированный авиабензин, не уступающий по характеристикам этилированному, октановое число которого превышает пока не удалось никому.
При этом самым современным и совершенным самолетам и вертолетам с поршневыми двигателями нужен авиабензин с повышенным октановым числом — не меньше 100. Поэтому разработкой экологичных аналогов этилированного авиабензина 100LL (одна из самых востребованных марок в мире) сегодня занимаются ведущие производители и научные центры во всем мире. В том числе подобная программа существует и у «Газпром нефти».
100 тысяч авиарейсов выполняется в мире каждый день
Заправка в крыло
Правильная организация заправки даже одного воздушного судна — процесс сложный и при этом очень ответственный. Инцидентов и катастроф, причиной которых стала некачественно организованная заправка, к сожалению, в истории мировой авиации произошло немало. Достаточно вспомнить аварию 2000 года, когда у Ту-154 авиакомпании «Сибирь», летевшего из Краснодара, при посадке в Новосибирске отказали все три двигателя. Как показало расследование, топливные насосы просто забило частицами эпоксидного покрытия, кустарно нанесенного на внутренние стенки топливозаправщика умельцами одного из краснодарских ремонтных предприятий. Но если в этом случае благодаря профессионализму пилотов обошлось без жертв, то в Иркутске при падении гигантского транспортника Ан-124 на жилые дома в 1997 году погибли 72 человека. Одна из версий причины отказа трех двигателей «Руслана» из четырех — превышение содержания воды в авиационном топливе, которое привело к образованию кристаллов льда, забивших топливные фильтры. Чтобы такого не случалось, весь процесс заправки очень жестко регламентирован, а само топливо проходит несколько проверок качества на пути от нефтеперерабатывающего завода до бака самолета.
Первый этап — выходной контроль на самом НПЗ. Однако качественные характеристики керосина могут измениться при его перевозке в случае несоблюдения всех правил транспортировки. Поэтому при приеме керосина на топливозаправочном комплексе (ТЗК), вне зависимости от того, каким путем оно пришло с завода: по трубе, как в аэропортах московского авиаузла или санкт-петербургском Пулково; железнодорожным или автомобильным транспортом, как это происходит в большинстве воздушных гаваней страны, или, тем более, если керосин проделал долгий путь, включающий и наземные и водные маршруты, как при доставке в отдаленные точки, такие как Чукотка, — обязательно проводится входной контроль. Из каждой партии берутся пробы для лабораторных исследований, а также арбитражная проба, которую сразу опечатывают и хранят на случай возникновения разногласий в оценке качества у разных участников процесса топливообеспечения. Само топливо при закачке в приемные резервуары ТЗК проходит через фильтры с тонкостью фильтрации не более 15 мкм.
Затем керосин отстаивается в резервуарах, после чего проходит полномасштабную проверку по всем основным параметрам, определенным ГОСТом, таким как плотность, фракционный состав, кислотность, температура вспышки, кинематическая вязкость, концентрация смол, содержание воды и механических примесей, температура начала кристаллизации, взаимодействие с водой, удельная электропроводность. Если экзамен успешно сдан, керосин получает паспорт качества, который становится для топлива пропуском на перрон аэропорта. Правда, перед выдачей для заправки самолета, керосин проходит еще один этап контроля — аэродромный — и еще раз фильтруется, теперь через еще более мелкий фильтр. Проверке подвергается и сама заправочная техника, которую без специального контрольного талона до самолета не допустят.
Заправляют самолеты двумя способами. В крупных современных аэропортах перрон соединен с ТЗК системой центральной заправки, а на самолетных стоянках установлены топливные гидранты. Из них керосин в баки воздушного судна перекачивается через специальные заправочные агрегаты (ЗА). Однако пока все же более распространен другой способ — с помощью цистерн—топливозаправщиков (ТЗ). В свою очередь в ТЗ керосин наливается на пунктах налива — складских или перронных. В зависимости от размера цистерны топливозаправщик может вместить до 60 тысяч литров керосина.
Перед началом закачки топливо еще раз проверяют, правда, без использования лабораторий. Керосин сливается из резервуаров ТЗ в прозрачную банку, и визуально определяется наличие в нем воды, кристаллов льда или осадка. Также проверяется и наличие воды в баках самолета перед заправкой и после нее. Перед подсоединением рукава топливозаправщика к горловине бака и само воздушное судно, и ТЗ обязательно заземляются. В истории бывали случаи, когда разряды статического электричества воспламеняли топливо и вызывали серьезные пожары. Для обеспечения безопасности людей самолеты практически всегда заправляются до посадки в них пассажиров.
Где хранится керосин
Объем топливных баков самого крупного и вместительного до последнего времени пассажирского лайнера Boeing-747 достигает 241 140 л (у последних модификаций). Это позволяет залить около 200 тонн топлива. Более привычные ближне- и среднемагистральные Boeing-737 и Airbus A-320 могут принять по
В большинстве самолетов топливо размещается в крыльях и баке, расположенном в центральной части самолета. На некоторых моделях еще один бак есть в хвосте или стабилизаторе — для утяжеления задней части самолета и облегчения взлета, а также для регулировки центровки самолета в полете.
Сначала топливо вырабатывается из внутренних отсеков крыла, затем из концевых. Однако непосредственно к двигателям керосин поступает только из одного бака — расходного (как правило, центрального), куда перекачивается изо всех остальных емкостей.
Для того чтобы предотвратить снижение давления при расходе топлива и прекращения его подачи в топливную систему, все баки сообщаются с атмосферой с помощью специальных дренажных баков в концевой части крыла. Попадающий в них забортный воздух замещает объем израсходованного горючего.
Топливо по бакам на современных лайнерах распределяется автоматически с помощью бортового компьютера. Соблюдение баланса крайне важно, так как влияет на центровку самолета, нарушение которой может привести к самым печальным последствиям, вплоть до катастрофы. Контролировать же процесс заправки и скорректировать его в случае необходимости можно со специальной панели, расположенной рядом с местом подсоединения рукава.
Сам оператор топливозаправщика в процессе заправки держит в руке специальный прибор контроля Deadman, кнопку которого необходимо нажимать через определенные промежутки времени. Если этого не происходит, заправка прекращается — система воспринимает пропуск в нажатии как нештатную ситуацию. Как только заданное количество керосина попало в баки, автоматика отключает подачу топлива, и заполняются документы, фиксирующие результаты заправки.
Автоматизация по всем направлениям
Постоянно автоматизируется не только сам процесс того, как заправляют самолеты. Именно в этом направлении развивается и вся система авиатопливообеспечения. Уже сегодня клиенты лидеров мирового рынка в этом сегменте могут в онлайн-режиме заказать заправку своего самолета в любом аэропорту присутствия топливного оператора. Такую схему развивает, например, Air Total International, свою интегрированную облачную систему управления топливозаправкой создает и Air BP, причем делает он это совместно с глобальным центром планирования полетов RocketRoute, в платформу которого интегрируются данные о топливозаправочной сети по всему миру.
В этом же направлении двигается «Газпромнефть-Аэро» в рамках реализации программы «Цифровой ТЗК».
241 тыс. л — объем топливных баков одного из самых крупных и вместительных в настоящее время пассажирских лайнеров Boeing-747
Сам процесс заправки по такой схеме выглядит как кадр из фантастического фильма. К лайнеру на стоянке подъезжает ТЗ, пилот, как на обычной АЗС, платит за топливо пластиковой картой с помощью мобильного терминала, которым оборудован топливозаправщик. Водитель ТЗ с планшета оформляет и распечатывает документы, подтверждающие факт заправки для пилота — уже через 10 минут в офис авиакомпании приходят необходимые финансовые документы, а баки самолета заполняются топливом.
Наличие такой системы, очевидно, повышает конкурентоспособность топливных операторов, так как значительно упрощает и оптимизирует процесс планирования полетов их клиентам — авиакомпаниям.
Зеленый керосин
Еще одно направление развития авиатопливного рынка совпадает с вектором движения рынка автомобильного — это снижение уровня вредных выбросов в атмосферу. Главная технология здесь — создание более чистого топлива, в первую очередь за счет разработки и использования биокомпонентов.
На сегодня процедуру сертификации прошли несколько технологий производства авиационного биотоплива. Биокеросин производят из биомассы с помощью процесса Фишера — Тропша*, из растительного масла, создают горючее для самолетов и на основе этилового спирта. Биокомпоненты в разных пропорциях (максимум 50×50) смешиваются с обычным авиакеросином, что позволяет сократить объем выбросов углекислого газа в атмосферу почти на 50 %. При этом конечный продукт по химическому составу эквивалентен традиционному авиатопливу, и его применение не влияет на эксплуатационные характеристики самолетов.
Одним из первых коммерческие заправки биотопливом начал аэропорт норвежского Осло, а пионером в использовании экологичного керосина стала немецкая Lufthansa. Использование биотоплива одобрено Федеральной авиационной администрацией США (FAA), им уже заправляют свои самолеты в США несколько десятков авиакомпаний.
Но у развития этого направления есть одно но — производство биотоплива пока слишком дорого, поэтому сегодня, во времена низких цен на нефть, оно не может на равных конкурировать с обычным «Джетом», а тем более с ТС-1.
Полезные дополнения
Авиакеросин, как правило, не используется в чистом виде. Для улучшения его характеристик используются различные присадки. Основные из них:
Противодокристаллизационная (ПВК-жидкость): наиболее известная присадка этого типа — жидкость «И-М». При полете на большой высоте топливо охлаждается до очень низких температур (от −30°С до −45°С). В таких условиях вода, содержащаяся в топливе, кристаллизуется, частицы льда могут забить фильтры, и двигатель остановится. Присадки эффективно решают эту проблему.
Антистатическая: увеличивает электропроводность топлива, снижая при этом активность накопления статического электричества в топливной системе и, соответственно, риск возникновения пожара.
Антиокислительная: борется с окислением топлива и отложением смолистых образований в топливной системе и двигателе.
Противоизносная: увеличивает срок эксплуатации механизмов топливной системы.
* Процесс Фишера — Тропша — химическая реакция, происходящая в присутствии катализатора, в которой монооксид углерода (CO) и водород H2 преобразуются в различные жидкие углеводороды. Обычно используются катализаторы, содержащие железо и кобальт. Принципиальное значение этого процесса — производство синтетических углеводородов
Авиационный керосин
Группа компаний «АБАС» предлагает к продаже самолетное топливо оптом
по выгодным ценам в Москве и Московской области
на условиях самовывоза и с доставкой
Наименование топлива | Цена, руб/литр |
---|---|
Топливо самолетное (ТС-1) | от |
Группа компаний «АБАС» осуществляет поставку авиационного керосина в любых объемах (от 1 м³) для организаций, предприятий и частных лиц в Москве, Московской области и соседних регионах.
У нас вы можете приобрести авиакеросин от ведущих российских НПЗ, соответствующий требованиям Технического регламента Таможенного союза ТР ТС 013-2011 «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» и межгосударственному стандарту ГОСТ 10227-86 «Топлива для реактивных двигателей. Технические условия».
Стоимость поставки партии авиакеросина зависит от необходимого объема и удаленности объекта, на который производится доставка. Рассчитать предварительную стоимость партии поможет наш калькулятор.
- Авиационное топливо поставляется объемами от 1000 литров.
- Форма оплаты — наличный расчет, банковские карты, безналичный расчет.
- Сроки поставки — от 1 до 3 дней в зависимости от требуемого объема топлива и удаленности от Москвы.
При отгрузке топлива мы предоставляем:
- паспорт качества на авиационный керосин;
- товарно-транспортную накладную с указанием основных параметров привезенного топлива: объема, веса, температуры, плотности.
- Дизельное топливо
- Бензин
- Керосин
- Аналоги дизельного топлива
- Печное топливо
- Топливо самолётное
- Только качественное топливо от проверенных нефтеперерабатывающих предприятий.
- Собственная служба доставки для любых объемов заказа.
- Отслеживание перемещения машин с помощью системы ГЛОНАСС.
- Дополнительный контроль по счетчику слива топлива.
- Лучшая цена за литр и тонну авиакеросина в регионе.
- Экспресс-доставка в пределах города в течение 3 часов с момента заказа.
Оформить заказ на авиационное топливо в ГК «АБАС» Вы можете следующими способами:
- Оставить заявку на нашем сайте с помощью формы обратной связи.
- Позвонить по телефону 8 (800) 775-37-41.
- Отправить заявку по электронной почте на адрес info@msk-toplivo.ru.
Как только мы получим Ваше сообщение, заявка будет обработана в максимально короткие сроки.
Мы также реализуем оптом по выгодным ценам дизельное топливо, бензин и печное топливо.
Авиационный керосин (авиакеросин, авиатопливо) – вид углеводородного топлива, предназначенный для летательных аппаратов с тепловыми реактивными двигателями. В зависимости от марки, может использоваться как в дозвуковой, так и в сверхзвуковой авиации.
Марки авиационного топлива:
- ТС-1 (предел выкипания 150-250 °C).Самый распространенный вид авиационного керосина для дозвуковой авиации.
- Т1 (предел выкипания 130-280 °C). В настоящее время выпускается в крайне ограниченных объемах в силу его негативного влияния на срок службы двигателей.
- Т-1С (предел выкипания 130-280 °C). Его применение, так же, как и Т1, значительно сокращает срок службы авиадвигателей.
- Т-2 (предел выкипания 60-280 °C). Отличается низкой вязкостью и плотностью, а также высоким давлением паров. В настоящее время не производится.
- РТ (предел выкипания 135-280 °C). Обладает высокими противоизносными свойствами и химической стабильностью. Срок хранения — до 10 лет.
- Т-6 (предел выкипания 195-315 °C). Применяется в сверхзвуковой авиации ВВС.
- Т-8В (предел выкипания 165-280 °C). Как и Т-6, используется в сверхзвуковых самолетах военной авиации.
В западных странах в основном используется авиакеросин марки Jet A1. Главное отличие Jet A1 от его российского аналога ТС-1 заключается в технологии производства. Помимо этого, Jet A1 считается более экологически безопасным, а его температура вспышки на 10 °C выше, чем у ТС-1. При этом ТС-1 может использоваться при более низких температурах.
Сравнительная характеристика авиакеросинов ТС-1 и Jet A-1
Параметры | ТС-1 | Jet A-1 |
---|---|---|
Кислотность, KOH мг/100 см³ | 0,7 | 0,1 |
Массовая доля RSH*, % | 0,003 | 0,003 |
Массовая доля общей серы, % | 0,2 | 0,3 |
Кинематическая вязкость, мм²/cек. | 8,0 (-40°С) | 8,0 (-20°С) |
Плотность, кг/м³ | 780 (20°С) | 775 (15°С) |
Температура вспышки, °С | 28 | 38 |
Высота некоптящего пламени, мм | 25 | 25 |
* RSH —содержание меркаптановых соединений серы |
Показатели качества авиакеросина
Основными показателями качества для авиационного топлива являются:
- массовая и объемная теплота сгорания;
- давление насыщенных паров;
- термостабильность;
- кинематическая вязкость;
- электропроводность;
- сернистость;
- кислотность;
- нагарные и противоизносные свойствам;
- совместимость с конструкционными материалами.
Важнейшим показателем авиационного топлива является его теплота сгорания. Этот показатель зависит от количества содержащегося в топливе водорода. Чем выше показатель теплоты сгорания, тем больше дальность полета самолета на одной заправке.
Кроме того, важное значение имеет температура начала кристаллизации и вязкости. От этого показателя зависит возможность эксплуатации самолетов на больших высотах при низких температурах (от минус 60 °C и ниже).
Технология производства
Авиационный керосин ТС-1 производят путем перегонки серосодержащей нефти. Сырая нефть представляет собой смесь углеводородов, имеющих различные свойства. Для разделения углеводородных фракций производят атмосферную перегонку в ректификационных колоннах, в результате чего нефть разделяется на бензиновую, керосиновую, дизельную фракции и мазут. Поскольку качество получаемых фракций не соответствует требованиям, предъявляемым к готовым нефтепродуктам, фракции подвергаются дальнейшей обработке. С помощью процесса гидроочистки добиваются снижения соединений серы. Для получения реактивного топлива применяют гидрокрекинг – воздействие избытка водорода при температуре 380—400 °С и давлении 10 МПа.
Улучшение эксплуатационных свойств самолетного топлива
Как и обычный бензин, реактивное топливо нуждается в добавлении разнообразных присадок, улучшающих его эксплуатационные свойства:
- Антистатическая присадка применяется с целью увеличения электропроводности топлива. Это предотвращает накопление статического электричества, ведь в противном случае накопленный статический заряд может привести к взрыву.
- Противоизносная присадка необходима для повышения смазывающей способности авиакеросина, что положительно сказывается на сроке службы топливного механизма.
- Противоводокристаллизационная присадка препятствует образованию кристаллов воды при длительном значительном охлаждении топлива (например, при полетах на больших высотах). Такие кристаллы могут забивать топливные фильтры и нарушать ток топлива к двигателю.
- Антиокислительная присадка повышает химическую стабильность топлива, предотвращая его окисление при повышенных температурах.
Авиационное топливо
Авиационное топливо — горючее вещество, вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата для получения теплов
Авиационное топливо — горючее вещество, вводимое вместе с воздухом в камеру сгорания двигателя летательного аппарата для получения тепловой энергии в процессе окисления кислородом воздуха (сжигания).
Делится на 2 типа — авиационный бензин и керосин.
Бензин применяются, как правило, в поршневых двигателях, керосин — в турбореактивных.
Также известны разработки дизельных поршневых авиационных моторов, которые использовали дизельное топливо, а в настоящее время — керосин.
На данный момент из-за прогрессирующего дефицита нефти ищутся способы для замены нефтяного авиационного топлива, в том числе рассматриваются варианты топлив: синтетическое, криогенное (включая жидкий водород), криогенное метановое топливо (КМТ) и другие.
Любой авиационный двигатель рассчитывается под определенный тип (сорт) топлива, на котором он выдает требуемые параметры по мощности, приемистости, надежности, ресурсу, и рекомендуемые аналоги топлива, на которых допускается, как правило, ограниченная эксплуатация, с потерей ряда характеристик двигателя.
Авиационный бензин
Основная область применения авиационного бензина — топливо высоконагруженных поршневых двигателей внутреннего сгорания.
Основной способ производства авиационного бензина — прямая перегонка нефти, каталитического крекинга или риформинга без добавки или с добавкой высококачественных компонентов, этиловой жидкости и различных присадок.
Для авиабензина основными показателями качества являются:
детонационная стойкость (определяет пригодность бензина к применению в двигателях с высокой степенью сжатия рабочей смеси без возникновения детонационного сгорания);
фракционный состав (говорит об испаряемости бензина, что необходимо для определения его способности к образованию рабочей топливовоздушной смеси; характеризуется диапазонами температур выкипания (40-180(°)С) и давлений насыщенных паров (29-48 кПа));
химическая стабильность (способность противостоять изменениям химического состава при хранении, транспортировке и применении).
Классификация авиационного бензина основывается на их антидетонационных свойствах, выраженных в октановых числах и в единицах сортности.
Сорта советского авиационного бензина ранее маркировались по системе: буква Б и через дефис — цифра, обозначающая октановое число.
Как пример, в СССР в 1950 х гг. выпускались авиационные бензины — Б-59, Б-70, Б-74, Б-78б и Б-78г, причем 2 последних несколько различались по химическому составу, что обозначали литеры после цифры: б — это из бакинских месторождений нефти, а г — из грозненских.
В дальнейшем для повышения октанового числа в бензин вводилась антидетонационная присадка:
продукт Р-9 (тетраэтилсвинец — 55%, бромистый этил — 35%, монохлорнафталин — 10%, красный краситель);
продукт В-20 (тетраэтилсвинец — 55%, бромистый этил — 35%, дихлорэтан — 10%, синий краситель);
Присадка добавлялось по объёму от 1 до 4 см 3 /литр.
Бензин с присадкой имел маркировку:
на основе Б-59: 1Б-59(73), 2Б-59(78), 3Б-59(81), 4Б-59(82)
на основе Б-70: 1Б-70(80), 2Б-70(85), 3Б-70(87), 4Б-70(88)
на основе Б-74: 1Б-74(85), 2Б-74(88), 3Б-74(90), 4Б-74(92)
на основе Б-78: 1Б-78(87), 2Б-78(92), 3Б-78(93), 4Б-78(95)
где цифра перед буквой Б означает объём количества присадки в см3 на литр бензина. В скобках число показывает итоговое октановое число смеси бензина с присадкой.
Также готовились топливные смеси, с добавлением в бензин бензолов и изооктанов, с октановым числом 95:
Смесь №1: 60% Б-70, 20% изооктана и 20% неогексана.
Смесь №2: 60% Б-70, 20% алкилбензола и 20% неогексана.
Смесь №3: 60% Б-70, 32% изооктана и 8% изопентана.
С распространением турбореактивных двигателей производство авиационного бензина было значительно сокращено.
К концу 20 го века в производстве оставались этилированный бензин Б-91/115 и Б-95/130, которые маркируются по ГОСТ 1012-72 через дробь: в числителе — октановое число или сортность на бедной смеси, в знаменателе — сортность на богатой смеси.
Затем производство этого бензина в России было полностью прекращено, а парк легкомоторной авиации начал использовать автомобильный бензин АИ-95 или импортный бензин AVGAS 100LL (с осени 2016 года 100LL производится в РФ по ГОСТ Р 55493-2013).
Также осталось производство бензина Б-70, который долгое время применялся в качестве горючего для турбостартеров двигателей самолётов типа Ту-16, Ту-22, МиГ-21 и ряда др.
В настоящее время этот бензин в основном применяется при техническом обслуживании техники в качестве растворителя.
Реактивное топливо
Керосин — фракция нефти, выкипающая в основном в интервале температур 200-300°С
Реактивное топливо, топливо для авиационных реактивных двигателей — это как правило, керосиновые фракции, получаемые прямой перегонкой из малосернистых (например, Т-1) и сернистых (ТС-1) нефтей.
В настоящее время прямоперегонного авиационного топлива мало, широко применяется гидроочистка и добавка присадок.
Керосин применяется для бытовых целей как печное и моторное топливо, растворитель лаков и красок.
Реактивное топливо применяется в качестве горючего для газотурбинных двигателей самолётов и вертолётов гражданской и военной авиации, и кроме того, топливо на борту воздушного судна также может использоваться в качестве теплоносителя или хладагента (топливно-воздушные и топливно-масляные радиаторы), и в качестве рабочей жидкости гидросистем (например, управление сечением реактивного сопла двигателя).
Также реактивное топливо широко применяются как растворитель при техническом обслуживании воздушных судов, при очистке от загрязнений ручным либо машинным способом (например, в ультразвуковой установке для очистки фильтров в качестве рабочей жидкости применяется авиакеросин).
Авиационное реактивное топливо проходит в общей сложности до 8 ступеней контроля качества, а в Российской Федерации, кроме того, и приемку военным представителем.
Реактивное топливо вырабатывается в основном из среднедистиллятных фракций нефти, выкипающих при температуре 140-280 С° (лигроино-керосиновых).
Широкофракционные сорта реактивного топлива изготовляются с вовлечением в переработку бензиновых фракций нефти.
Для получения некоторых сортов реактивных топлив (Т-8В, Т-6) в качестве сырья применяются вакуумный газойль и продукты вторичной переработки нефти.
Кроме углеводородов в реактивном топливе в незначительных количествах присутствуют сернистые, кислородные, азотистые, металлорганические соединения и смолистые вещества.
Их содержание в реактивных топливах Регламентируется стандартами.
В России и странах СНГ, эксплуатирующих советскую авиатехнику, используются следующие типы авиационного топлива:
— ТС-1 в РФ производится по ГОСТ 10227-86 с изм. 1-6. — прямогонная фракция 150-250 С°, либо смесь прямогонных и гидроочищенных фракций (основным ограничением является содержание общей серы и меркаптановой не более 0,2 % и 0,003 %).
Самый массовый вид авиационного топлива на территории РФ и постсоветском пространстве, предназначенный для всех старых типов турбовинтовых и дозвуковых турбореактивных двигателей, также на нём эксплуатируются самолёты зарубежных производителей.
По своим характеристикам и области применения примерно соответствует зарубежному керосину Jet-A.
Является резервным по отношению к топливу РТ.
— РТ — высококачественное топливо, нефтяная фракция 135-280 С° с полной гидроочисткой.
Содержание серы: общей — 0,1 %, меркаптановой — 0,001 %.
В связи с гидрокрекингом топливо «сухое», то есть имеет низкие смазывающие свойства.
В процессе производства в него вводятся антиокислительная и антиизносная присадки.
Предназначено для турбореактивных дозвуковых и некоторых сверхзвуковых самолётов (Су-27, Ту-22М3 и др.), а также в качестве резерва топлива ТС-1.
Зарубежных аналогов для данного топлива нет.
-Т-6 и Т-8В — термостойкое реактивное топливо для двигателей некоторых сверхзвуковых самолетов (например, МиГ-25).
Производятся по очень сложной технологии с гидроочисткой и введением присадок.
Это топливо производятся только для нужд Министерства обороны РФ.