0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое синхронная скорость асинхронного двигателя

Что такое синхронное вращение

Частота вращения ротора, при которой работает асинхронный электродвигатель, зависит от частоты питающего напряжения, от мощности текущей нагрузки на валу, и от числа электромагнитных полюсов данного двигателя. Эта реальная частота вращения (или рабочая частота) всегда меньше так называемой синхронной частоты, которая определяется лишь параметрами источника питания и количеством полюсов обмотки статора данного асинхронного двигателя.

Таким образом, синхронная частота вращения двигател я — это частота вращения магнитного поля обмотки статора при номинальной частоте питающего напряжения, и она несколько отличается от рабочей частоты. В итоге количество оборотов в минуту под нагрузкой всегда меньше так называемых синхронных оборотов.

На приведенном рисунке видно, как синхронная частота вращения для асинхронного двигателя с тем или иным количеством полюсов статора зависит от частоты питающего напряжения: чем выше частота — тем выше угловая скорость вращения магнитного поля. Так например в частотно-регулируемых приводах меняя частоту питающего напряжения изменяют синхронную частоту двигателя. При этом изменяется и рабочая частота вращения ротора двигателя под нагрузкой.

Обычно обмотку статора асинхронного двигателя питают трехфазным переменным током, который и создает вращающееся магнитное поле. И чем больше пар полюсов — тем меньшей будет синхронная частота вращения — частота вращения магнитного поля статора.

Большинство современных асинхронных двигателей имеют от 1 до 3 пар магнитных полюсов, в редких случаях 4, ведь чем больше полюсов — тем ниже КПД асинхронного двигателя. Однако при меньшем количестве полюсов скорость вращения ротора можно менять очень-очень плавно, изменяя частоту питающего напряжения.

Как уже было отмечено выше, реальная рабочая частота асинхронного двигателя отличается от его синхронной частоты. Почему так происходит? Когда ротор вращается с частотой меньшей чем синхронная, то проводники ротора пересекают магнитное поле статора с некоторой скоростью и в них наводится ЭДС. Эта ЭДС создает токи в замкнутых проводниках ротора, в результате данные токи взаимодействуют с вращающимся магнитным полем статора, и возникает крутящий момент — ротор увлекается магнитным полем статора.

Если момент имеет достаточную величину чтобы преодолеть силы трения, то ротор начинает вращаться, при этом момент электромагнитный равен тормозящему моменту, который создают нагрузка, силы трения и т. д.

При этом ротор все время отстает от магнитного поля статора, не может рабочая частота достичь синхронной частоты, так как если бы это произошло, то в проводниках ротора перестала бы наводиться ЭДС, и вращающий момент просто не появится. В итоге, для двигательного режима вводят величину «скольжение» (скольжение s, как правило, составляет 2-8%), в связи с чем справедливо и следующее неравенство двигателя:

Но если ротор того же асинхронного двигателя раскрутить при помощи какого-нибудь внешнего привода, например двигателем внутреннего сгорания, до такой скорости, что частота вращения ротора превысит синхронную частоту, то ЭДС в проводниках ротора и активный ток в них приобретут определенное направление, и асинхронный двигатель превратится в генератор.

Общий электромагнитный момент окажется тормозящим, скольжение s станет отрицательным. Но чтобы генераторный режим смог проявить себя, необходимо поставить асинхронному двигателю реактивную мощность, которая бы создавала магнитное поле статора. В момент старта такой машины в генераторном режиме может хватить остаточной индукции ротора и конденсаторов, которые подключают к трем фазам обмотки статора, питающей активную нагрузку.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Рабочие характеристики синхронного двигателя. Синхронная скорость асинхронного двигателя

Рабочие характеристики синхронного двигателя

Рабочими характеристиками синхронного двигателя назы­вают зависимость оборотов п2 ,тока статораI, подведенной мощностиP1 полезного вра­щающего моментаМ2, cosф

и к. п. д. т] от полезной мощности на валу двигателя Р2 при постоянных напряжении сетиUC, частоте сетиfи токе возбужденияiв(рис. 215).

Так как скорость вращения ротора п2 не зависит от нагрузки и равна скорости вращающегося магнитного

Принцип действия асинхронного двигателя

Асинхронный трехфазный двигатель — самый распро­страненный в промышленности и сельском хозяйстве. Около 95% всех двигателей — асинхронные.

Асинхронный двигатель изобретен талантливым рус­ским ученым М. О. Доливо-Добровольским в 1889 г. Простота устройства, дешевизна, высокий к. п. д., боль­шая надежность в ра­боте способствовали его быстрому внедрению во все отрасли хозяйства.

Принцип действия асинхронного двигате­ля основан на взаимо­действии вращающего­ся магнитного поля, соз­даваемого в трехфазной обмотке статора, и про­водников с током, из которых состоит обмот­ка ротора. Скорость вращения поля определяют из фор­мулы (58)

Представим себе вращающееся магнитное поле в виде кольца с двумя постоянными магнитами (рис. 221).

В середине кольца помещена обмотка ротора в виде короткозамкнутой беличьей клетки.

Вращающееся-магнитное поле статора индуктирует в проводах обмотки ротора токи, направление которых определяют по правилу правой руки. При этом нужно иметь в виду, что если магнитное поле вращается по ча­совой стрелке, то относительное вращение проводника нужно принимать против часовой стрелки.

В проводах, находящихся под северным полюсом, ток направлен к нам и направление его обозначим точкой.

При взаимодействии магнитного поля статора и ротора (рис. 221) к проводу приложена сила F, заставляющая его перемещаться в сторону движения поля статора.

Если поле статора вращается со скоростью n1; которую называют синхронной, то ротор вращается с меньшей скоростью n2 которую называют асинхронной.

Отставание ротора от поля статора называют сколь­жением и обозначают буквой s.

Величина скольжения может быть определена из урав­нения

(162)

Скольжение — основная переменная величина асин­хронной машины, от которой зависит режим ее работы.

Из формулы скольжения можно вывести формулу обо­ротов ротора

Число оборотов ротора п2 при номинальных нагрузке, напряжении и частоте указывают на заводском щитке двигателя.

Величина скольжения асинхронных двигателей со­ставляет примерно s = 0,01- 0,06. Скольжение может быть определено также в процентах.

(164)

У асинхронного двигателя при неподвижном роторе скольжение имеет максимальное значение 5=1, так как n2 = 0.

В начальный момент пуска в ход асинхронного двига­теля, когда n2 еще равно нулю, 5 = 1.

Пример. Определить число оборотов четырехполюсного асинхронного электродвигателя, работающего со сколь­жением 3 %.

Решение. Для четырехполюсного асинхронного электродвигателя скорость вращения поля статора со­ставляет

Читать еще:  Частота оборотов коллекторного двигателя

Тогда скорость вращения ротора определится из фор­мулы скольжения

Синхронная скорость — вращение — двигатель

Синхронная скорость — вращение — двигатель

Синхронная скорость вращения двигателя обратно пропорциональна его числу пар полюсов [ см. формулу (9.1) ], что позволяет осуществлять ступенчатое регулирование скорости вращения путем изменения количества полюсов обмотки статора. [1]

Синхронная скорость вращения двигателя 1500 об / мин. [2]

Синхронная скорость вращения двигателя прямо пропорциональна частоте источника питания [ см. формулу (9.1) ], что позволяет осуществлять плавное и экономичное регулирование скорости вращения асинхронных двигателей с получением достаточно жестких механических характеристик, обладающих высокой перегрузочной способностью. Частотное регулирование наиболее эффективно для группового электропривода ( транспортные рольганги, конвейерные установки и пр. При этом скорость вращения двигателей может регулироваться как за счет увеличения, так и уменьшения частоты источника питания относительно номинальной частоты / ном 50 гц. [3]

При достижении синхронной скорости вращения двигателя компрессора, отсутствии объективных показателей о перегрузке компрессора и помпажном режиме, проверяемых по контрольно-измерительным приборам, и отсутствии посторонних звуков машина переводится с пускового контура на — рабочий. [4]

Вследствие этого число пар полюсов уменьшается, а синхронная скорость вращения двигателя увеличивается в два раза. [6]

На рис. 2.9 представлена механическая характеристика асинхронного двигателя, где S-nsn / nc — скольжение двигателя; / гс60 ftp — синхронная скорость вращения двигателя; р — число пар полюсов об-ыотки статора; Sm — критическое или опрокидывающее скольжение. [8]

Индукция В6 и средняя линейная нагрузка AS однофазных асинхронных двигателей малой мощности с экранированными полюсами выбираются по кривым рис. 22.2 в зависимости от отношения полезной мощности к синхронной скорости вращения двигателя. [10]

Индукция В (, и средняя линейная нагрузка AS маломощных однофазных асинхронных двигателей с экранированными полюсами выбираются по кривым рис. 24.2 в зависимости от отношения полезной мощности к синхронной скорости вращения двигателя. [11]

Трехфазный асинхронный двигатель с фазным ротором вращается со скоростью гаг 480 об / мин. Определить число пар полюсов р и скольжение s, если синхронная скорость вращения двигателя nl 500 об / мин. [12]

Трехфазный асинхронный двигатель с фазным ротором вращается со скоростью п2480 об / мин. Определить число пар полюсов р и скольжение s, если синхронная скорость вращения двигателя п 500 об / мин. [13]

Если обмотку статора машины подключить к источнику переменного тока и одновременно магнитные полюса ротора возбудить постоянным током, то ротор начнет вращаться, и машина будет работать, как электрический двигатель. Частота, заданная источником, и число полюсов ротора определят синхронную скорость вращения двигателя. [14]

На щитке короткозамкнутого трехфазного асинхронного двигателя имеются следующие данные: 2 2 кет, 1440 об / мин, 220 / 380 в, 8 3 / 4 8 а. Определить число пар полюсов р двигателя, скольжение s и пусковой ток / 1П для случаев соединения обмоток статора треугольником и звездой при включении в сеть с напряжением U — 220 в, если кратность пускового тока для соединения треугольником равна 5 5, а синхронная скорость вращения двигателя nt — 1500 об / мин. [15]

Регулирование скорости синхронных двигателей

После вхождения синхронного двигателя в синхронизм его ско­рость при изменениях момента нагрузки на валу до некоторого макси­мального значения Мтах остается постоянной и равной синхронной скорости

Так как изменение числа пар полюсов zp у серийно выпускаемых

двигателей не применяется, то частотное регулирование является прак­тически единственным способом регулирования угловой скорости син­хронных двигателей. Оно характеризуется в основном такими же пока­зателями, что и частотное регулирование скорости асинхронных двига­телей с короткозамкнутым ротором. Это регулирование плавное, двух­зонное. Диапазон регулирования вверх от номинальной синхронной скорости ограничивается механической прочностью ротора, его балан­сировкой и качеством подшипников. Диапазон регулирования вниз от номинальной синхронной скорости может достигать значений D = 1: (50 — т-100) и более с учетом абсолютной жесткости механических характеристик двигателя и обеспечения синусоидальности напряжения питания. Стабильность скорости высокая. Допустимая нагрузка при по­стоянном возбуждении и независимой вентиляции соответствует номи­нальному моменту.

Использование полупроводниковых преобразователей частоты от­крывает большие возможности в отношении формирования требуемых статических и переходных процессов частотно-регулируемых синхрон­ных электроприводов.

В отличие от асинхронного короткозамкнутого двигателя при час­тотном регулировании скорости синхронный двигатель обладает тремя каналами управления моментом: изменением тока возбуждения /в, из­менением напряжения обмоток статора Uj и изменением частоты f j

напряжения обмоток статора.

Механические характеристики производственных механизмов и электроприводов преобразователь частоты — синхронный двигатель для законов регулирования класса Uj jfj = const приведены на рис. 5.56.

Рис. 5.56. Механические характеристики производственных механизмов и электроприводов преобразователь частоты — синхронный двигатель

Рассмотренные законы управления при частотном регулировании скорости синхронного двигателя справедливы только в первом прибли­жении, особенно для явнополюсного синхронного двигателя, так как неучет реактивного электромагнитного момента приводит к значитель­ным (до 20 %) погрешностям механических свойств двигателя.

Синхронный двигатель обладает очень важным свойством — при подаче на статорные обмотки постоянного напряжения (/^ = 0) он соз­дает тормозной момент при неподвижном роторе, обеспечивая механи­ческую фиксацию ротора в заданном положении.

Система векторного управления асинхронным электроприводом без датчика скорости

В частотно-регулируемых асинхронных электроприводах вектор­ное управление связано как с изменением частоты и текущих значений переменных (напряжения, тока статора, потокосцепления), так и со вза­имной ориентацией их векторов в декартовой системе координат. …

Частотное управление асинхронным электроприводом с компенсацией момента и скольжения

Сигналом тока можно воздействовать как на канал напряжения, так и на канал частоты. Функциональная схема электропривода с положи­тельными обратными связями по току в канале регулирования напряже­ния и частоты приведена на …

Частотное управление асинхронным электроприводом с векторной компенсацией

Если вектор напряжения Uj формируется векторным сложением напряжения задания U з, и сигнала / • /^ • ккм, вводимого с целью ком­пенсации падения напряжения в фазах А, В и С …

Как определяется синхронная скорость асинхронного двигателя. Способы регулирования скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей .

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Читать еще:  Что такое объемный кпд двигателя

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором . При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь

Эксплуатация электрических машин и аппаратуры — Изменение скорости вращения ротора асинхронного двигателя

Содержание материала

В условиях эксплуатации электроустановок иногда возникает необходимость изменить поминальную скорость вращения ротора короткозамкнутых двигателей. В ряде случаев переключение данной обмотки статора двигателя на другое число полюсов предпочтительнее, чем перемотка двигателя на другую скорость, так как переключить обмотку можно сравнительно быстро без затраты обмоточного провода. Можно переключать на большую и меньшую скорость вращения обмотки двигателей присоединением в лобовых частях.
Переключать асинхронные двигатели на большую скорость вращения можно при однослойной и двухслойной обмотке на статоре.
При наличии на статоре однослойной обмотки (двухплоскостной или цепной не «вразвалку») увеличить скорость вращения ротора двигателя можно лишь вдвое. Число пар полюсов исходной обмотки должно быть четным, то есть скорость вращения до его переключения должна быть примерно 1500 и 750 об/мин. Увеличение скорости вращения ротора двигателя с однослойной обмоткой на статоре достигается изменением направления тока в получастях фаз на каждых четырех соседних полюсах исходной обмотки. При переключении двигателя с 1500 на 3000 об/мин (синхронных) достаточно изменить направление токов в полуфазах обмотки. На рисунке 101 показана принципиальная схема переключения одной фазы двигателя с однослойной обмоткой на вдвое большую скорость вращения.
При переключении статорной обмотки на меньшее число полюсов изменяется градусное выражение зубцового деления.

Поэтому начало средней фазы переносится в другую катушечную группу, чтобы и при большей скорости вращения получить пространственное смещение фазных обмоток в 120 эл. градусов.

Рис. 101. Принципиальная схема переключения фазы двигателя с меньшей (а) на большую (б) скорость вращения.
Переключение асинхронных двигателей с однослойной обмоткой на большую скорость вращения приводит к значительному искажению магнитного поля. По этой причине переключенный двигатель при пуске застревает примерно на 1/7, новой номинальной скорости вращения. Для устранения явления задержки ротора при разбеге двигатель нужно пускать на меньшей скорости, а затем переключать на большую. В этом случае получается двухскоростной двигатель с девятью свободными концами обмотки статора. Принципиальная схема двухскоростного двигателя показана на рисунке 102. Для управления двигателем можно использовать многоконтактный пакетный переключатель или два трехполюсных переключателя, как показано на рисунке 102. Для пуска оба переключателя замыкают в верхнее положение, и двигатель разворачивается на меньшей скорости. Затем переключатели одновременно переводят в нижнее положение, двигатель переходит на большую скорость вращения.

Рис. 102. Принципиальная схема двухскоростного двигателя, полученного из односкоростного с однослойной обмоткой статора.
Переключение двигателя на большую скорость вращения сопровождается изменением индукции и магнитного потока машины. В результате немного увеличивается нагрев статора. Мощность К. п. д. и cosφ двигателя после переключения на большую скорость при номинальном напряжении не изменяются.
При двухслойной обмотке статора скорость вращения двигателя можно увеличить вдвое (при четном числе полюсов) и на ближайшую большую синхронную скорость.
Для увеличения скорости вращения двигателя вдвое необходимо увеличить число катушек в катушечной группе, что достигается последовательным соединением двух соседних катушечных групп в исходной обмотке.

При изменении скорости двигателя на ближайшую большую, например с 1000 на 1500 об/мин, нужно перегруппировать катушки в соответствии с новым числом полюсов обмотки. Для этого следует разъединить некоторые в определенных местах расположенные катушечные группы, чтобы образовать новые с требуемым числом катушек в них. Если обмотка при 1000 об/мин имела в группе по две катушки, то после переключения на 1500 об/мин катушечные группы должны содержать по три катушки. Для получения таких групп шесть групп исходной обмотки, равномерно расположенные по расточке статора, надо разъединить на две катушки и последовательно присоединить по одной к группам, расположенным справа и слева от расчлененной группы.
После образования групп с определенным числом катушек в них соединяют фазы обычным образом для двухслойных обмоток. В результате переключения получается обычная двухслойная обмотка с очень сильным укорочением шага. Это укорочение тем больше, чем на более высокую скорость переключен двигатель.
При неизменном напряжении на фазе двигателя после его переключения значительно возрастает индукция в статоре к ток холостого хода, что в ряде случаев вызывает нагрев к снижает cosφ двигателя. Для устранения этого требуется снижать напряжение на виток, что может быть достигнуто за счет переключения фаз с треугольника на звезду или уменьшения числа параллельных ветвей. При этом мощность двигателя уменьшается. За счет возможного увеличения тока при большей скорости вращения можно несколько повысить допустимую мощность двигателя после переключения при удовлетворительных значениях к. п. д. и соsφ.
Разбег двигателя после переключения на большую скорость удовлетворительный, так как характер магнитного поля не изменяется.
Асинхронный двигатель переключают на меньшую скорость вращения только при двухслойной обмотке на статоре при укороченном шаге. Если шаг обмотки такой Величины, что степень укорочения его при большей скорости вращения не меньше степени удлинения при меньшей скорости, то после переключения обмотки получаются удовлетворительные результаты работы двигателя.
Уменьшить скорость вращения двигателя с двухслойной обмоткой можно вдвое и на ближайшую меньшую синхронную скорость, например, можно переключать с 1500 на 1000 об/мин или с 1000 на 750 об/мин. Для переключения на меньшую скорость вращения необходимо расчленить в лобовых частях катушечные группы исходной обмотки, образовать новые группы с числом катушек в них, соответствующим уменьшенной скорости (большему числу полюсов). Если обмотка при 1500 об/мин имела группы из трех катушек, то при переключении на 1000 об/мин нужно образовать группы по две катушки. Вновь полученные группы для двухслойных обмоток соединяют в фазы.
Уменьшение скорости вращения переключением данной обмотки сопровождается ростом индукции, тока холостого хода, нагрева двигателя при низких к. п. д. и cos φ.

Читать еще:  Alz двигатель каким заменить

Длительная работа двигателя в этих условиях невозможна. Условия тем тяжелее, чем больше снижается скорость вращения двигателя Для устранения этого нужно уменьшить витковое напряжение фазы двигателя. Этого можно достичь, перейдя на ближайшее меньшее стандартное напряжение, переходом от схемы соединения фаз треугольником к звезде и уменьшением параллельных ветвей в фазах.
При переключении двухслойной обмотки на меньшую скорость можно получить двухскоростной двигатель. Наиболее просто это сделать, если переключить скорости с отношением 2:1. Для этого исходная обмотка должна быть со значительно укороченным шагом и иметь по две параллельные ветви в фазах. Меньшая скорость вращения достигается изменением направления тока в соответствующих полуфазах обмотки. Для этого используют удобную схему двойная звезда — одинарная звезда с шестью свободными выводами обмотки. На высшей скорости двигатель работает по схеме двойная звезда, на меньшей — по схеме одинарная звезда.
Двигатель с обычной двухслойной обмоткой можно переделать в двухскоростной и с другим соотношением скорости, например 3:2. Такой двигатель для изменения скорости вращения требует сложного переключающего устройства

Частота вращения: формула

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector