0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое щеточный и асинхронный двигатель

Превосходство бесщёточных двигателей

Превосходство бесщёточных двигателей

Бесщёточные двигатели постоянного тока имеют множество преимуществ. Прежде всего, в них меньше изнашивающихся или ломающихся деталей, чем в двигателе с щетками. Поэтому он надёжнее, дешевле в обслуживании и требуют меньше или вовсе не требуют технического обслуживания.

Устройство практически не нагревается, что увеличивает его производительность. Бесщёточные моторы обладают КПД до 90%, щеточные — до 70%, а бензиновые — порядка 15% (остальная энергия тратится на нагрев). Нет трения — нет потери мощности, которая сопоставима с мощностью бензинового двигателя. Трение отсутствует, температурных перепадов мало — практически полное отсутствие износа продлевает жизнь мотора. Это снижает стоимость обслуживания и увеличивает срок жизни инструмента.

Бесщеточные моторы работают очень тихо. Использовать такую технику комфортно, а соседям при этом спокойно. Высокоэффективное использование энергии позволяет устройству дольше работать от аккумулятора, чем его аналогу со щеточным двигателем. Реже требуется зарядка, что сэкономит вам время и электроэнергию.

Преимущества бесщёточного двигателя:

  • Бесщёточный двигатель может в считанные секунды развить максимальную скорость оборотов за счёт своего строения.
  • В работе не подвержен перегреву, а даже наоборот — остаётся достаточно холодным.
  • Невысокая температура гарантирует длительность работы подшипника вентилятора.
  • Главным преимуществом является, что у бесщёточных двигателей отсутствует искрообразование. Это позволяет использовать его в работе с летучими химическими составами, пылью, грязью и водой.
  • Большим и главным плюсом является бесшумная работа двигателя. Поэтому его стараются использовать в разных устройствах.
  • Отсутствие щеточно-коллекторного узла продлевает срок службы устройства.

БОЛЬШОЙ КРУТЯЩИЙ МОМЕНТ

Бесщёточный двигатель не требует или почти не требует техобслуживания

Нет выхлопных газов, нет токсичных выбросов

Без щёток — меньше трения, двигатель вращается быстрее

Нет щёток — значит нет трения, т.е. двигатель меньше нагревается, что увеличивает производительность

Благодаря отсутствию трения скорость и крутящий момент ещё больше

Бесщёточные двигатели более компакты

Наши специалисты ответят на любой интересующий вопрос

Как правильно выбрать бесщеточный электродвигатель

При выборе бесщеточного электродвигателя для своих разработок инженеры имеют несколько вариантов. Неправильный выбор может привести к провалу проекта не только на этапе разработки – испытания, но и после выхода на рынок, что крайне не желательно. Для облегчения работы инженеров мы сделаем краткое описание преимуществ и недостатков четырех наиболее популярных видов бесщеточных электрических машин: асинхронный электродвигатель (АД), двигатель с постоянными магнитами (ПМ), синхронные реактивные электродвигатели (СРД), вентильные реактивные электродвигатели (ВРД).

Асинхронные электродвигатели

Асинхронные электрические машины смело можно назвать костяком современной промышленности. Благодаря своей простоте, относительно низкой стоимости, минимальным затратам на обслуживание, а также возможности работать напрямую от промышленных сетей переменного тока, они прочно въелись в современные производственные процессы.

Сегодня существует множество различных преобразователей частоты с самыми различными алгоритмами управления, которые позволяют регулировать скорость и момент асинхронной машины в большом диапазоне с хорошей точностью. Все эти свойства позволили асинхронной машине значительно потеснить с рынка традиционные коллекторные двигатели. Вот почему регулируемые асинхронные электродвигатели (АД) легко встретить в самых различных устройствах и механизмах, таких как тяговый асинхронный электропривод, электроприводы стиральных машин, вентиляторов, компрессоров, воздуходувок, кранов, лифтов и многом другом электрооборудовании.

АД создает вращающий момент за счет взаимодействия тока статора с индуцированным током ротора. Но токи ротора нагревают его, что приводит к нагреванию подшипников и снижению их срока службы. Замена традиционной алюминиевой обмотки на медную не устраняет проблему, а приводит к удорожанию электрической машины и может накладывать ограничения на прямой ее пуск.

Статор асинхронной машины имеет довольно большую постоянную времени, что негативно сказывается на реагировании системы управления при изменении скорости или нагрузки. К сожалению, потери связанные с намагничиванием не зависят от нагрузки машины, что снижает КПД АД при работе с малыми нагрузками. Автоматическое уменьшение потока статора возможно использовать для решения данной проблемы — для этого необходим быстрый отклик системы управления на изменения нагрузки, но как показывает практика, такая коррекция не существенно увеличивает КПД.

На скоростях превышающих номинальную поле статора ослабевает из-за ограниченного напряжения питания. Вращающий момент начинает падать, так как для его поддержания будет требоваться больший ток ротора. Следовательно, управляемые АД ограничиваются диапазоном скорости для поддержания постоянной мощности примерно 2:1.

Механизмы, которые требуют более широкого диапазона регулирования, такие как: станки с ЧПУ, тяговый электропривод, могут снабжаться асинхронными электродвигателями специального исполнения, где для увеличения диапазона регулирования могут уменьшать количество витков обмотки, снижая при этом значения крутящего момента на низких скоростях. Также возможен вариант с использованием более высоких токов статора, что требует установки более дорогих и менее эффективных инверторов.

Немаловажным фактором при работе АД является качество питающего напряжения, ведь максимальный КПД электродвигатель имеет при синусоидальной форме питающего напряжения. В реальности преобразователь частоты обеспечивает импульсное напряжение и ток, похожий на синусоидальный. Проектировщикам стоит иметь ввиду, что КПД системы ПЧ-АД будет меньше, чем сумма КПД преобразователя и двигателя в отдельности. Улучшения качества выходного тока и напряжения повышают увеличением несущей частоты преобразователя, это приводит к снижению потерь в двигателе, но при этом возрастают потери в самом инверторе. Одним из популярных решений, особенно для промышленных мощных электроприводов, является установка фильтров между преобразователем частоты и асинхронной машиной. Однако это приводит к увеличению стоимости, габаритов установки, а также к дополнительным потерям мощности.

Еще одним недостатком асинхронных машин переменного тока является то, что их обмотки распределены на протяжении многих пазов в сердечнике статора. Это приводит к появлению длинных концевых поворотов, которые увеличивают габариты и потери энергии в машине. Эти вопросы исключены в стандартах IE4 или классах IE4. В настоящее время европейский стандарт (IEC60034) специально исключает любые двигатели, требующие электронного управления.

Двигатели с постоянными магнитами

Двигатели с постоянными магнитами (английский PMMS) создают крутящий момент благодаря взаимодействию токов статора с постоянными магнитами внутри или снаружи ротора. Электродвигатели с поверхностным расположением магнитов являются маломощными и используются в IT оборудовании, офисной технике, автомобильном транспорте. Электродвигатели со встроенными магнитами (IPM) распространены в мощных машинах, используемых в промышленности.

Двигатели с постоянными магнитами (ПМ) могут использовать концентрированные (с коротким шагом) обмотки, если пульсации вращающего момента не являются критичными, но распределенные обмотки являются нормой в ПМ.

Поскольку PMMS не имеют механических коммутаторов, то преобразователи играют важную роль в процессе контроля тока обмотки.

В отличии от других видов бесщеточных электродвигателей, PMMS не требуют тока возбуждения, необходимого для поддерживания магнитного потока ротора. Следовательно, они способны обеспечить максимальный крутящий момент на единицу объема и могут быть лучшим выбором, если требования к массо-габаритным показателям выходят на первый план.

К наибольшим недостаткам таких машин можно отнести их очень высокую стоимость. Высокопроизводительные электрические машины с постоянными магнитами используют такие материалы как неодим и диспрозий. Данные материалы относятся к редкоземельным и добываются в геополитически нестабильных странах, что приводит к высоким и нестабильным ценам.

Также постоянные магниты добавляют производительности при работе на низких скоростях, но являются «Ахиллесовой пятой» при работе на высоких. Например, при увеличении скорости машины с постоянными магнитами возрастет и ее ЭДС, постепенно приближаясь к напряжению питания инвертора, при этом снизить поток машины не представляется возможным. Как правило, номинальная скорость является максимальной для ПМ с поверхностно-магнитной конструкцией при номинальном напряжении питания.

Читать еще:  Что такое бугеля для двигателя

На скоростях больше номинальной, для электродвигателей с постоянными магнитами типа IPM, используют подавление активного поля, что достигается путем манипуляций с током статора при помощи преобразователя. Диапазон скорости, в котором двигатель может надежно работать, ограничен примерно 4:1.

Необходимость ослабления поля в зависимости от скорости приводит к потерям независящим от вращающего момента. Это снижает КПД на высоких скоростях, и особенно при малых нагрузках. Этот эффект наиболее актуален при использовании ПМ в качестве тягового автомобильного электропривода, где высокая скорость на автостраде неизбежно влечет за собой необходимость ослабления магнитного поля. Часто разработчики выступают за применение двигателей с постоянными магнитами в качестве тяговых электроприводов электромобилей, однако их эффективность при работе в данной системе довольно сомнительна, особенно после вычислений связанных с реальными циклами вождения. Некоторые производители электромобилей сделали переход от ПМ к асинхронным электродвигателям в качестве тяговых.

Также к существенным недостаткам электродвигателей с постоянными магнитами можно отнести их трудно управляемость в условиях неисправности из-за присущей им противо-ЭДС. Ток будет протекать в обмотках, даже при выключенном преобразователе, пока вращается машина. Это может приводить к перегреву и другим неприятным последствиям. Потеря контроля над ослабленным магнитным полем, например при аварийном отключении источника питания, может привести к неподконтрольной генерации электрической энергии и, как следствие, к опасному возрастанию напряжения.

Рабочие температуры – это еще одна не самая сильная сторона ПМ, кроме машин, изготовленных из самарий-кобальта. Также большие броски тока инвертора могут привести к размагничиванию.

Максимальная скорость PMMS ограничивается механической прочностью крепления магнитов. В случае повреждения ПМ его ремонт, как правило, осуществляется на заводе изготовителе, так как извлечение и безопасная обработка ротора практически невозможна в обычных условиях. И, наконец, утилизация. Да это тоже доставляет немного хлопот после окончания срока службы машины, но наличие редкоземельных материалов в этой машине должно упростить этот процесс в ближайшем будущем.

Несмотря на перечисленные выше недостатки, электродвигатели с постоянными магнитами являются непревзойденными с точки зрения низкоскоростных мелкогабаритных механизмов и устройств.

Реактивные синхронные двигатели

Синхронные реактивные электродвигатели всегда работают только в паре с преобразователем частоты и используют тот же тип управления потоком статора, что и обычный АД. Роторы данных машин изготавливают из тонколистной электротехнической стали с пробитыми пазами таким образом, что бы они намагничивались с одной стороны меньше, чем с другой. Стремление магнитного поля ротора «соединится» с вращающимся магнитным потоком статора и создает вращающий момент.

Основным плюсом реактивных синхронных электродвигателей являются незначительные потери в роторе. Таким образом, хорошо спроектированная и работающая с правильно подобранным алгоритмом управления синхронная реактивная машина вполне способна соответствовать европейским стандартам премиум класса IE4 и NEMA, не используя при этом постоянных магнитов. Снижения тепловых потерь в роторе повышает крутящий момент и увеличивает плотность мощности, по сравнению с асинхронными машинами. Эти двигатели имеют низкий уровень шума благодаря низкому уровню пульсаций момента и вибраций.

Основным недостатком является низкий коэффициент мощности по сравнению с асинхронной машиной, что приводит к большей потребляемой мощности из сети. Это увеличивает затраты и ставит перед инженером сложную задачу, стоит ли применять реактивную машину или нет для конкретной системы?

Сложность в изготовлении ротора и его хрупкость делает невозможным применение реактивных электродвигателей для высокоскоростных операций.

Синхронные реактивные машины хорошо подходят для широкого спектра промышленных применений, которые не требуют больших перегрузок или высоких скоростей вращения, а также все чаще применяются для частотно-регулируемых насосов из-за повышенной их эффективности.

Вентильные реактивные электродвигатели

Вентильный реактивный двигатель (с английского SRM) создает вращающий момент за счет притягивания магнитных полей зубцов ротора к магнитному полю статора. Вентильные реактивные двигатели (ВРД) имеют относительно небольшое количество полюсов обмотки статора. Ротор имеет зубчатый профиль, что упрощает его конструкцию и улучшает создаваемое магнитное поле, в отличии от реактивных синхронных машин. В отличии от синхронных реактивных двигателей (СРД), ВРД используют импульсное возбуждение постоянного тока, что требует обязательное наличие специального преобразователя для их работы.

Для поддержания магнитного поля в ВРД необходимы токи возбуждения, что уменьшает плотность мощности по сравнению с электрическими машинами с постоянными магнитами (ПМ). Однако они все же имеют габаритные размеры меньшие, чем обычные АД.

Основным преимуществом вентильных реактивных машин является то, что ослабления магнитного поля происходит естественным образом при снижении тока возбуждения. Это свойство дает им большое преимущество в диапазоне регулирования при скоростях выше номинальной (диапазон устойчивой работы может достигать 10:1). Высокая эффективность присутствует у таких машин при работе на высоких скоростях и с малыми нагрузками. Также ВРД способны обеспечить удивительно постоянную эффективность в довольно широком диапазоне регулирования.

Вентильные реактивные машины обладают также довольно хорошей отказоустойчивостью. Без постоянных магнитов эти машины не генерируют неуправляемый ток и момент при неисправностях, а независимость фаз ВРД позволяет им работать с уменьшенной нагрузкой, но с повышенными пульсациями момента при выходе из строя какой-то из фаз. Это свойство может быть полезно, если проектировщики хотят повышенной надежности разрабатываемой системы.

Простая конструкция ВРД делает его прочным и недорогим в изготовлении. При его сборке не используются дорогие материалы, а ротор из нелегированной стали отлично подходит для суровых климатических условий и высоких скоростей вращения.

ВРД имеет коэффициент мощности меньший, чем ПМ или АД, но его преобразователю не нужно создавать выходное напряжение синусоидальной формы для эффективной работы машины, соответственно такие инверторы имеют меньшие частоты коммутации. Как следствие – меньшие потери в инверторе.

Основными недостатками вентильных реактивных машин являются наличие акустических шумов и вибрации. Но с этими недостатками довольно хорошо борются путем более тщательного проектирования механической части машины, улучшения электронного управления, а также механическое объединение двигатель – рабочий орган.

ВРД хорошо подходят для широкого спектра применения и их все чаще используют для обработки сверхпрочных материалов из-за большой перегрузочной способности и большого диапазона регулирования скоростей. Большая перегрузочная способность делает их все более привлекательными для использования в качестве тяговых электроприводов современных электромобилей. Также ВРД получили широкое распространение и в электробытовой технике.

Анализ надёжности электродвигателей, используемых в современных электроприводах

доктор технических наук

профессор, Дальневосточный федеральный университет

690950, Россия, Приморский край, г. Владивосток, ул. Суханова, 8

Burkov Aleksei Fedorovich

Doctor of Technical Science

Professor at the Department of Marine Energetics and Automatics of the Far Eastern Federal University

690950, Russia, Vladivostok, ul. Sukhanova, 8

ассистент, Дальневосточный федеральный университет

690091, Россия, Приморский край, г. Владивосток, ул. Суханова, 8

Kataev Evgenii Viktorovich

Teaching Assistant at the Department of Marine Energetics and Automatics of the Far Eastern Federal University

690091, Russia, Vladivostok, ul. Sukhanova, 8

доктор технических наук

профессор, Дальневосточный федеральный университет

690950, Россия, Приморский край, г. Владивосток, ул. Суханова, 8

Kuvshinov Gennadii Evgrafovich

Doctor of Technical Science

Professor at the Department of Marine Energetics and Automatics of the Far Eastern Federal University

690950, Russia, Vladivostok, ul. Sukhanova, 8

кандидат технических наук

доцент, Дальневосточный федеральный университет

690095, Россия, Приморский край, г. Владивосток, ул. Суханова, 8

Chupina Kira Vladimirovna

Читать еще:  Что за двигатель bgc

PhD in Technical Science

Associate Professor at the Department of Marine Energetics and Automatics of the Far Eastern Federal University

690095, Russia, Vladivostok, ul. Sukhanova, 8

Просмотров статьи: 10304 c 5.5.2015

Дата направления статьи в редакцию:

Дата публикации:

Аннотация: Предметом исследования являются характерные повреждения электродвигателей (ЭД), используемых в современных электроприводах (ЭП). Автор рассматривает такие аспекты темы, как конструктивные особенности различных типов ЭД и связанные с ними характерные неисправности. Показана зависимость отказа конструктивных узлов ЭД от условий эксплуатации, применяемых материалов, режимов работы и др. Рассмотрены основные виды отказов ЭД постоянного тока. Особое внимание уделяется наиболее распространённым в настоящее время асинхронным ЭД. Представлена формула безотказной работы обмотки асинхронного ЭД. На основе статистических данных показана вероятность выхода из строя различных узлов ЭД под влиянием всевозможных факторов. Сделаны выводы о методах увеличения надёжности конкретных типов ЭД и о перспективе применения различных ЭД в современных электроприводах. Исходя из сделанного исследования, можно сделать вывод, что наиболее перспективными на сегодняшний день являются переключаемые реактивные двигатели и бесконтактные двигатели постоянного тока.

Ключевые слова: бесконтактные двигатели, электродвигатель постоянного тока, асинхронный электродвигатель, переключаемые реактивные двигатели, электропривод, надежность, отказ, срок службы, электродвигатель, обмотка электродвигателя

Abstract: The research subject is the typical failures of electric motors used in modern electric drives. The authors consider such aspects of the topic as the constructive peculiarities of various types of electric motors and their typical failures. The paper demonstrates the dependence of the failure of constructional units of electric motors on the operational conditions, materials used, operation modes, etc. The authors consider the main forms of failure of direct-current motors. Special attention is given to the most widespread induction motors. The article contains the formula of fail-safe functioning of an induction motor winding. Based on the statistical data, the authors demonstrate the possibility of failure of various units of an electric motor under the impact of different factors. The authors formulate the conclusions about the ways to increase the reliability of particular types of electric motors and about the prospects of using various electric motors in modern electric drives. Based on the study results, the authors conclude that the most promising nowadays are switched jet engines and no-contact direct-current motors.

electric motor, failure, life cycle, no-contact engines, direct-current motor, induction motor, switched jet engines , electric drives, reliability, electric motor winding

Надёжность является наиболее важным технико-экономическим показателем качества работы ЭД. Она, при прочих равных условиях, зависит от конструктивных особенностей ЭД, их режимов и условий эксплуатационных испытаний.

Для ЭП, как технических объектов, являющихся электромеханическими системами, представляются актуальными мониторинг, анализ и повышение их надёжности на стадии потребления «жизненного цикла» [1] .

Несмотря на почти повсеместное применение асинхронных двигателей, ЭП постоянного тока продолжает применяться там, где требуется широкое плавное регулирование скорости вращения, высокие перегрузочные, пусковые и тормозные моменты.

Наиболее частой причиной отказов двигателей постоянного тока является неисправность коллекторно-щёточного узла. Износ коллектора имеет сложную природу и обусловлен влиянием ряда эксплуатационных факторов. Большое влияние на износ коллектора оказывает состояние политуры, характер коммутационного процесса, наличие подгара на коллекторе.

На надёжность коллекторно-щёточного узла существенно влияет износ щёток. Срок их службы зависит от физико-химических свойств, плотности тока под щётками и характерных особенностей процесса коммутации.

Коммутационная надёжность электрических машин зависит от правильной геометрии коллектора. Коллектор из-за воздействия технологических и эксплуатационных факторов изменяет форму своей поверхности. В процессе обработки и изготовления коллектора возникают технологические отклонения, обуславливающие такие дефекты, как эксцентричность, овальность, бой (в отдельных точках поверхности), которые прогрессируют в условиях эксплуатации под действием динамических и электромагнитных сил, а также в результате ослабления затяжки шпилек коллектора, усадки изоляции.

В целях устранения возникшей неисправности коллектор подвергается обточке, тщательной шлифовке и полировке до нужной чистоты.

К факторам, влияющим на износ коллекторов, относятся: давление щёток на коллектор, материал коллектора и щёток, их вибрация и биение коллектора, высокая скорость вращения и др.

Высокие температуры контактных поверхностей и нарушение постоянства контактов между коллектором и щётками вызывают дополнительное искрение и обгорание щёток и коллекторных пластин.

Износ коллектора зависит также и от химических факторов, к которым относятся: образование контактной плёнки на поверхности коллектора, состав и влажность окружающего воздуха, наличие активных газов и др. Наличие плёнки на поверхности коллектора снижает скорость его износа и способствует более благоприятному распределению тока под щётками. На износ коллектора оказывают влияние плотность тока под щётками, сопротивление переходных контактов щёток и коллектора, нарушение коммутации машины.

При вращении коллектора площади прилегания щёток изменяются. Это приводит к перемещению точечных контактов поверхностей щёток с коллектором с образованием в них чрезмерных плотностей токов и высоких местных нагревов. Размыкание и замыкание контактных точек на поверхности коллектора с образованием малых электрических дуг приводит к разрушению поверхности. Этот же процесс вызывает значительные изменения переходного сопротивления контактов щёток. На значение этого сопротивления большое влияние оказывают влажность воздуха, состояние контактной плёнки, скорость вращения коллектора.

Статистические данные показывают, что при правильной эксплуатации износ коллекторов при непрерывной работе машин составляет 0,1 – 2,0 мм в год.

Старение и разрушение изоляции в электрических машинах происходит под влиянием тепловых и механических воздействий, что приводит к повреждениям обмоток якорей машин постоянного тока в виде пробоя корпусной изоляции между обмоткой и пакетом стали якоря, межвитковым замыканиям. Кроме того наблюдаются распайки соединительных петушков коллекторных пластин с обмоткой, разрушения проволочных бандажей и др.

Важной механической частью машины постоянного тока является щёточная траверса с комплектами щёток. Повреждения щёточной траверсы проявляются в виде поломки кольца траверсы, расстройства регулировки положения щёткодержателей на пальцах траверсы, повреждения деталей щёточного узла.

Для повышения надёжности машин постоянного тока особое внимание обращается на улучшение конструкции и условий работы коллектора и щёточного узла. Важнейшим фактором, способствующим повышению надёжности работы коллектора, является тщательно разработанная технология его изготовления.

В целях увеличения надёжности скользящих контактов за счёт снижения износа электрощёток на коллекторе, в их углеродистые материалы при изготовлении вводится небольшое количество (2…4% от общей массы) фторопласта, а также применяют щётки с пропитывающими веществами [2] .

Всех вышеуказанных недостатков машин постоянного тока лишены бесконтактные двигатели постоянного тока (БДПТ). Отличие БДПТ от коллекторных двигателей традиционной конструкции состоит в том, что у них щёточно-коллекторный узел заменён полупроводниковым коммутатором (инвертором), управляемым сигналами, поступающими с бесконтактного датчика положения ротора. Рабочая обмотка двигателя расположена на сердечнике статора, а постоянный магнит — на роторе [5] .

Трёхфазные асинхронные двигатели являются наиболее массовой продукцией электромашиностроения, однако их надёжность недостаточна. Основным видом отказа электродвигателей является повреждение его обмотки, что для электродвигателей со всыпной обмоткой требует капитального ремонта. В среднем в течение года капитальному ремонту подвергается около 20% установленных асинхронных двигателей.

В подавляющем большинстве случаев (85. 95%) отказы происходят из-за повреждения обмотки; 2. 5 % электродвигателей отказывают из-за повреждения подшипников.

Около 35 % отказов наблюдается из-за недостаточно хорошего качества изготовления электродвигателей. На качестве электродвигателей сказывается неудовлетворительное качество применяемых материалов (особенно электроизоляционных, обмоточных проводов и пропиточных лаков). Основной причиной отказов являются недостатки эксплуатации (главным образом неудовлетворительная защита). По этой причине происходит около 50 % отказов.

Читать еще:  Что такое объем двигателя авто

С точки зрения надёжности, обмотку асинхронных двигателей можно рассматривать как систему, состоящую из последовательно соединённых элементов. Такими элементами являются пары соседних проводников, композиция пазовой изоляции и композиция межфазной изоляции в лобовых частях обмотки. При двухслойной обмотке должна быть также учтена надёжность изоляции между секциями. Поскольку отказ любого перечисленного элемента приводит к отказу всей системы (обмотки), то надёжность обмотки (вероятность безотказной работы) может быть определена согласно теореме умножения вероятностей по формуле

, (1)

где – надёжность межвитковой изоляции пары проводников; – надёжность композиции пазовой изоляции в одном пазу; – надёжность композиции межфазной изоляции в лобовой части обмотки (одной межфазной прокладки); – надёжность композиции межсекционной изоляции в пазу (при двухслойной обмотке).

В формуле (1) не все сомножители равноценны. Наименьшее значение имеет первый сомножитель , который в основном и определяет надёжность обмотки. Это обусловлено двумя факторами: относительно низкой надёжностью межвитковой изоляции и значительным числом пар проводников в асинхронных двигателях ( n = 102…103). Надёжность композиции пазовой межфазной и межсекционной изоляций достаточно высокая.

Эта теория подтверждается материалами изучения опыта эксплуатации асинхронных двигателей. Отказы по характеру повреждения обмоток распределяются следующим образом: межвитковые замыкания – 93%, повреждение и пробои пазовой изоляции – 2%, пробои межфазной изоляции – 5%.

Иногда отказы происходят вследствие задевания ротора о статор из-за значительной неравномерности воздушного зазора, что приводит к недопустимым местным перегревам обмоток и витковым замыканиям.

Характерными повреждениями для обмотки ротора асинхронных короткозамкнутых двигателей являются трещины и обрывы стержней обмотки ротора в месте их входа в короткозамыкающие кольца. Обрывы стержней свидетельствуют о значительных динамических силах, действующих на ротор при пусках и переключениях частоты вращения [2] .

Большей надёжностью обладают переключаемые реактивные двигатели (ПРД), которые в иностранной литературе называют «Switched Reluctance Machines», а в отечественной, чаще всего, вентильно-индукторными, питаются от источника постоянного тока и снабжены коммутатором, переключающим обмотки статора. Статор и ротор выполнены из листовой магнито-мягкой стали. Ротор ПРД не имеет ни обмоток, ни постоянных магнитов. Обмотка каждой фазы статора состоит из надетых на противоположные полюсы двух последовательно соединённых катушек. Благодаря такой конструкции, при выходе из строя одной из катушек нет необходимости в перемотке всего двигателя. [3, 4]

Рассмотрев основные неисправности различных типов двигателей, можно сделать вывод, что наибольшей надёжностью обладают БДПТ и ПРД. Тем не менее, наиболее перспективным является ПРД, поскольку у них отсутствует постоянный магнит на роторе, что существенно снижает его стоимость. Кроме того, в схеме электропривода с БДПТ обязательным является наличие датчика положения ротора, надёжность которого недостаточно высока, в то время как существуют векторные системы управления ПРД без датчика положения ротора.

Просто выделите и скопируйте ссылку на эту статью в буфер обмена. Вы можете также попробовать найти похожие статьи

Нужна ли сервосистема или нет

Вы действительно нуждаетесь в сервосистеме? Возможно асинхронный двигатель с устройством обратной cвязи может предложить более эффективное решение для специфических задач? Пристальный взгляд на описание и рабочие характеристики серво и асинхронных двигателей может заставить задуматься.

Сервопривод – это не только двигатель. Это система управления движением с замкнутый контуром, состоящая из контроллера, привода, двигателя и устройства обратной связи, обычно оптического или магнитного инкодера. Замешательство начинается, когда производитель моторов начинает продвигать серводвигатель.

“Двигатель сервосистемы”- синхронная машина с постоянными магнитами (ПМ), представленная щеточным или бесщеточным двигателем с ПМ. Они имеет определенные рабочие характеристики, выделяющие его среди других типов моторов. Синхронный двигатель с постоянным магнитом имеет очень высокий пиковый и непрерывный вращающий моменты, и используется для приведения в движение сервосистемы с высоким ускорением и замедлением в устройствах высокоточного позиционирования. Вращающий момент прямо пропорционален току на входе. Скорость вращения вала электродвигателя напрямую зависит от входного напряжения. Чем выше входное напряжение, тем выше скорость двигателя. Функция вращающий момент-скорость линейна Система постоянных магнитов непосредственно примыкает к воздушному зазору двигателя. В бесщеточной конфигураций двигателя с ПМ, две взаимодействующие магнитные системы, вращающийся ротор (с соединенными постоянными магнитами) и неподвижная обмотка статора, взаимодействуя, создают момент двигателя и вращение. Трехфазное поле статора запитывается последовательно, и ротор с ПМ синхронно следует за вращающимся полем статора Специальное электронное коммутирующее устройство используется для определения положения ротора, и запитки обмоток статора. Бесщеточный двигатель с ПМ имеет ряд преимуществ перед любым другим типом двигателя для систем точного позиционирования, за исключением большинства задач для автомобильной промышленности и систем использующих очень большие двигатели. Бесщеточный двигатель с ПМ является только двигателем сервосистемы в случае использования в системах с обратной связью по моменту, скорости или положению. Асинхронный двигатель имеет аналогичный бесщеточному двигателю статор, и абсолютно другую конструкцию ротора. Ротор асинхронного двигателя с беличьей клеткой состоит из ряда проводящих алюминиевых или медных шин, уложенных в пазы ротора и соединенных накоротко кольцом. Эти короткозамкнутые стержни ротора магнитно взаимодействуют с вращающимся полем статора и индуцируют поле ротора, которое взаимодействует с полем статора, вращая ротор. Существует небольшая разность между синхронным полем статора, медленным полем ротора и фактической скоростью ротора. Эта разность скоростей называется скольжением. Частота тока на входе определяет скорость вращения двигателя. Например, на 60 гц, в зависимости от значения скольжения, двухполюсный двигателя переменного тока без нагрузки вращается с частотой 3600 оборотов в минуту, а четырехполюсный двигателей переменного тока, 1800 оборотов в минуту. С ростом момента на валу, скольжение увеличивается и скорость падает. Асинхронный двигатель переменного тока развивает больший вращающий момента за счет уменьшения скорости, пока нагрузка не приближается к точке пробоя, когда скорость двигателя внезапно понижается до ноля. Особенность работы двигателя переменного тока -небольшой вращающий момент при запуске, поэтому при старте двигателя необходимо снимать нагрузку. Вызванные такой зависимостью момент-скорость ограничения были преодолены созданием в 80-х годах прошлого века инверторного электронного привода. Способность инвертора менять и напряжение и частоту, используя приводы с регулируемой или переменной скоростью, изменила форму кривой момент-скорость, позволив асинхронным двигателей переменного тока стать лидерами при решения задач быстродействия.

Системы управления скоростью и позиционирования сегодня: продолжающееся развитие высокоэффективных приводов привело к тому, что бесщеточный и асинхронный двигатель переменного тока на равных конкурируют в различных областях , однако бесщеточный двигатель продолжает доминировать в системах высокоточного позиционирования. Бесщеточные двигатели с ПМ успешно конкурируют заводских условиях с щеточными двигателями постоянного тока при решении задач регулирования частоты вращения для нагрузок от 1 киловатта (1.37 л.с) и меньше. Как выбрать: асинхронные двигатели переменного тока теперь создаются не только для решений гарантирующих низкую инерционностью и быструю ответную реакцию по ускорением. Они лидируют в большинстве приложений с нагрузкой от 100 ватт до 1 мегаватта. Используйте бесщеточный двигатель с ПМ в сервосистемах позиционирования для нагрузок не более 50 киловатт (67 л.с.). Машины с магнитной индукцией- для систем с постоянной или переменной скоростью. Совместное использование встречается достаточно редко. Двигатели других типов продолжают подавать надежды, но пока без успеха аналогичного всеми признанному асинхронному двигателю переменного тока или многообещающему бесщеточному двигателю с постоянными магнитами.

Ссылка на основную публикацию
Adblock
detector