Что такое шаговый двигатель принцип работы
Принцип работы шагового электропривода и шаговых электродвигателей. Их конструкция и применение
Принцип работы шагового электропривода и шаговых электродвигателей
Электропривод, обеспечивающий преобразование числовой информации в дискретные механические положения называется шаговым. Электродвигатель с таким приводом работает от импульсных команд. Информационный сигнал управления шаговым электродвигателем поступает в распределитель импульсов в виде унитарного кода. Маломощное напряжение U1 поступает в усилитель мощности, где преобразуется в силовой импульс тока I1, возбуждающий фазу электродвигателя. Очередной сигнал вызывает появление напряжения U2 и тока I2, который вызывает сдвиг магнитного поля и соответствующий ему шаг ротора. Тоже происходит после очередного входного импульса. Далее цикл повторяется.
Принцип действия самого шагового электродвигателя можно рассмотреть на его упрощенной модели. Кольцевая обмотка статора электродвигателя, поворотные щетки, связывающие отпайки обмотки с источником питания. Роль щеток могут выполнять контактные или электронные ключи. Ось щеток и ось двухполюсного ротора в исходном положении совпадают. Сдвиг щеток характеризуется определенным углом, что вызывает поворот вектора магнитного поля на этот же угол. Ротор стремится догнать поле так, чтобы его ось совпала с осью щеток, то есть исключить динамическую ошибку. Непрерывное вращение щеток приводит к вращению ротора.
Конструкция и применение шаговых двигателей
Шаговые электродвигатели относятся к синхронным машинам. Их можно разделить на вращающиеся, линейные и комбинированные. Во вращающихся шаговых электродвигателях катушки обмоток укладываются в пазах железа статора с угловым смещением, зависящим от числа фаз.
В соответствие с назначением электродвигателя пазы имеют различную конфигурацию. Ротор магнитоэлектрического двигателя имеет несколько пар полюсов магнитов, а индукторного большое число зубцов. Принцип работы электродвигателя: по катушке протекает ток, создавая электромагнитный поток, фиксирующий ротор по зубцам полюсного выступа. При выключении фазы 1 и включении фазы 2 вызывается сдвиг потока на электрический угол, равный 360 градусам, деленным на число фаз. Ротор поворачивается в положение наибольшей магнитной проводимости по отношению ко второму полюсу, на механический шаг равный 360 градусам, деленным на число фаз и на число зубцов пассивного ротора (или на число пар полюсов активного ротора). Движение ротора происходит под воздействием синхронизирующего момента, который аппроксимируется в синусоиду (см. видео), где точка О соответствует устойчивому положению ротора. То есть положению, когда зубец ротора находится под зубцом статора. Точки А и Б, характеризующие неустойчивое положение ротора находятся напротив паза статора. Угловые расстояния ОА и ОБ соответствуют максимальной динамической ошибке, равной 180 электрическим градусам. А расстояние между амплитудами синхронизирующего момента равно максимальной статической ошибке 90 электрических градусов. Амплитуда синхронизирующего момента зависит от результирующего тока включенных фаз. Точкам А, О, Б момента соответствует диаграмма потенциальной энергии. Состояние ротора можно смоделировать при помощи шарика, попавшего в так называемую потенциальную яму. Например, шарик находится в точке О устойчивого равновесия. Сдвиг характеристики момента соответствует смещению потенциальной ямы. При пуске двигателя ротор может отставать от положения результирующего тока на угол не более чем 180 электрических градусов, что соответствует подъему шарика на край ямы в точку неустойчивого равновесия. Ротор стремится догнать поле, а шарик скатиться вниз. Это движение обычно сопровождается колебаниями и динамическими ошибками, возникающими за счет инерции. За счет именно динамических ошибок шаговый двигатель втягивается в синхронизм при скачках управляющих частот. Предельный скачок частоты при пуске называется частотой приемистости. При повышении частоты входных команд скорость вращения увеличивается. Дальнейший скачок частоты не обеспечивает пуск двигателя. Частота надежного запуска и есть частота приемистости. Область динамических частот шаговых электроприводов простирается от сотен герц до 2 килогерц. С уменьшением габаритов двигателей и снижением величины шага, динамические частоты увеличиваются. Сочетание малогабаритного шагового двигателя с гидроусилителем момента, позволяет одновременно расширить диапазон рабочих частот и момента. Именно поэтому в станках ЧПУ, в роботах, в нажимных винтах прокатных станов и других механизмах, где требуется сочетание высокой точности и динамических показателей применяется электрогидравлический шаговый электропривод или электропривод с силовыми шаговыми электродвигателями.
Блоки управления промышленным шаговым приводом со сложными алгоритмами выполняются на компактных микросхемах. Создание схем со свойствами управляемого источника тока — инвертора тока, расширило рабочие частоты до 10-20кГц, что обеспечило ускоренное вспомогательное рабочее движение на станках ЧПУ. Во многих промышленных механизмах с дискретным движением требуется исключить колебания даже на холостом ходу. Для этого созданы схемы управления, обеспечивающие старт-стопное движение. Они вырабатывают дополнительные импульсы на торможение перед подходом ротора к очередной точке устойчивости. Такое управление позволило создать печатные автоматы, графопостроители и координатографы, специальную киноаппаратуру и другие устройства без сложной быстроизнашивающейся механики.
В некоторых устройствах необходимо использовать величину шага в несколько микрон, например в электронной технологии. Получение малых шагов за счет роста числа фаз или зубцов ограниченно. Сделать это позволяет электронное дробление самого шага. На специальной экспериментальной установке можно проследить за этим процессом. Токи в фазах меняются до установленного значения не сразу, а мелкими ступеньками или плавно по определенному закону. Соответственно происходит и плавный поворот результирующего вектора потока и угловой характеристики даже при низких частотах. На экране осциллографа можно отследить положение годографа тока. Кроме рассмотренных нами сложных шаговых электродвигателей применяемых в устройствах ЧПУ, существуют простейшие однофазные. Их основные преимущества — простота конструкции и малые габариты, один канал связи и минимальное потребление электроэнергии. Эти электродвигатели нашли широкое применение в электронных часах, приборах времени и других системах. Пуск и однонаправленное вращение этих двигателей обеспечивают несимметричные магнитопроводы и возбуждение от постоянных магнитов. Конструкция однофазных шаговых электродвигателей просты, но разработки новых образцов осложнены наличием постоянных магнитов и малыми габаритами.
Так устроены и работают вращающиеся шаговые электродвигатели. Стремление исключить быстроизнашивающиеся дорогостоящие механические передачи вращающихся шаговых электродвигателей привело к созданию разнообразных конструкций линейных шаговых электродвигателей. Если вращающийся шаговый электродвигатель разрезать по образующей, то можно получить одностороннюю конструкцию плоского типа. Плоский, линейный шаговый электродвигатель, реализующий взаимопоступающее движение. Эту конструкцию можно преобразовать в цилиндрическую. Цилиндрические шаговые электродвигатели относятся к четырехфазным двигателям индукторного типа. Их принцип действия аналогичен вращающемуся электродвигателю, но зубцы на пористых выступах статора размещены вдоль продольной оси, а не по окружности. Это позволяет получить линейные шаги ротора индуктора. Цилиндрический шаговый электродвигатель выполнен из магнитной мягкой стали и имеет зубцы расположенные перпендикулярно его оси. Малую величину шага в этих двигателях можно получить за счет многофазных катушечных обмоток. Гладкие концы вала индуктора укреплены в опорах скольжения или качения, что ограничивает длину хода.
Плоский линейный шаговый электродвигатель
При возбуждении со стороны ротора — якоря, получаем шаговый двигатель активного типа. Со стороны статора — индукторный, который получил широкое применение. Ход плоского электродвигателя ограничен его длиной. Закрепив индуктор, получим перемещение магнитной системы. В индукторе некоторых электродвигателей профрезированы зубцы. Для уменьшения эксплуатационного зазора и улучшения эксплуатационных показателей линейных шаговых двигателей используются воздушные опоры. Сжатый воздух, проходя через калиброванные отверстия якоря, создает воздушную подушку 15-20 микрон. В ряде случаев предусматривается магнитная фиксация ротора при отключении питания. Разработано большое количество комбинированных электродвигателей. Так сочетание пары электродвигателей перпендикулярно в одной раме образуют планарный электродвигатель. Он может осуществлять двухкоординатное движение на плоскости, являющейся индукторами. Большое усилие притяжения к плите позволяет такому двигателю работать в любом положении. Простота и однотипность физических процессов в шаговых двигателях, их конструктивная пластичность позволили разработать бесконтактные электромеханические и электронные модули, реализующие сложное многокоординатное движение без дорогостоящих и изнашивающихся кинематических преобразователей.
Микропроцессорное управление электроприводом дает возможность выбирать оптимальные режимы работы для разных промышленных установок, гибко перестраивать программы движения, компенсировать систематические погрешности изготовления модулей. Отмеченные особенности делают многокоординатный шаговый привод весьма перспективным для робототехники и построение гибкого автоматизированного производства. Отличительная особенность гибкой автоматизации состоит в совмещении транспортных и технологических операций в одной установке. На основе модульного привода создано новое поколение прецизионной аппаратуры для электронной и других отраслей промышленности.
Особенности конструкции и принципа работы шагового двигателя активного типа.
Шаговые синхронные двигатели активного типа. В отличие от синхронных машин
непрерывного вращения шаговые двигатели имеют на статоре явно выраженные
полюса, на которых расположены катушки обмоток управления.
Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.
При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления
Особенности конструкции и принципа работы реактивного шагового двигателя.
У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.
Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.
Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора
Если зубцы ротора соосны с одной диаметрально расположенной парой полюсов статора, то они сдвинуты относительно каждой из оставшихся трех пар полюсов статора соответственно на ј, Ѕ и ѕ зубцового деления.
Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.
Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.
Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают.
Особенности конструкции и принципа работы линейного шагового двигателя.
Линейные шаговые двигатели (ЛШД) преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет значительно упрощать кинематическую схему ряда электроприводов, устраняя механические преобразователи вращательного движения в поступательное.
На базе ШД и ЛШД могут быть созданы многокоординатные исполнительные механизмы, осуществляющие сложные перемещения в декартовой, цилиндрической и сферической системах координат.
Шаговый двигатель нереверсивного типа.
Сельсины – конструкция, принцип работы и характеристики. Индикаторный режим.
Классификация основных типов электромашинных измерительно-преобразовательных устройств, применяемых для реализации обратных связей по углу и скорости, приведена
Сельсинами называют электрические микромашины переменного тока,обладающие способностью самосинхронизации и применяемые в синхронных системах дистанционной передачи угла в качестве датчиков и приемников. Передача угловой величины в такой системе происходит синхронно, синфазно и плавно. При этом между устройством, задающим угол (датчиком), и устройством, принимающим передаваемую величину (приемником), существуют только электрические соединения в виде линии связи.
Индикаторный режим используется при отсутствии другого исполнительного двигателя. Синхронизирующий момент между валами сельсина- датчика и сельсина- приемника создается при наличии некоторого пространственного угла =-, называемого углом рассогласования. Появляющиеся при этом ЭДС обеспечивают протекание тока по обмоткам синхронизации датчика и приемника. В результате в сельсине- приемнике возникает момент, старающийся повернуть его вал на угол равный углу поворота датчика. Из — за наличия механической нагрузки на валу приемника угол рассогласования, как правило, больше нуля.
Шаговые двигатели: принцип работы и управление
Двигатели постоянного тока (ДПТ) включаются незамедлительно при подаче на них напряжения. Они оснащены магнитами, находящимися на статоре. Коммутатор-коллектор относится к механическому типу, позволяет менять направление в обмотках тока.
Шаговые агрегаты являются разновидностью ДПТ. Они отличаются отсутствием коллекторного узла. Магнит в оборудовании расположен на подвижной части, он является постоянным. Если необходимо переменное сопротивление магнитов, устанавливается специальный блок, изготовленный из магнитного материала. Схемами, расположенными с внешней стороны, контролируются все коммутации.
Как правило, разработка системы «мотор-контроллер» производится так, чтобы стало возможным выводить подвижную часть на фиксированную позицию. Управление производится по положению. От формы ротора зависит цикличность его позиционирования.
Разновидности и особенности
Классифицируют серво- и шаговые агрегаты. Многие контроллеры способны взаимодействовать с двумя видами оборудования, поскольку принцип их действия является схожим. Шаговый агрегат отличается наличием дискретного режима. Синхронные системы характеризуются плавностью. В серводвигателе должен находиться прибор, определяющий скорость или положение, обеспечивающий обратную связь. Шаговое оборудование чаще используют в системах, когда необходимо при движении обеспечить небольшое ускорение. В высокодинамических установках применяются синхронные.
- Шаговые бывают с сопротивлением магнитов переменного характера и постоянными элементами. При наличии последних обычно оснащаются двумя обмотками, средний отвод не обязателен, он может отсутствовать.
- Гибридные и шаговые системы с постоянными магнитами постоянного типа характеризуются более простой конструкцией. В ней отсутствует центральный отвод. Подход обусловил усложнение смены полярности всех пар элементов.
Если для функционирования достаточно возбуждения одной обмотки, поворот подвижной части происходит на определенный угол. Он будет сохраняться, пока внешний момент не превзойдет внутренний, который удерживает элемент в определенном положении.
Конструктивные особенности оборудования определяют максимальную скорость его вращения. Изменение величины шага позволяет управлять этой характеристикой. Если шаговый агрегат выбрать и использовать в качестве исполнительного, получится упростить систему управления. В этом случае возможно не использовать датчик для создания обратной связи.
Если в синхронной системе происходит преобразование команды, поступающей в виде импульсов, в определенную величину угла поворота либо в фиксированное положение подвижной части, она называется шаговой.
Особенности функционирования
Когда в работе оборудования не теряется ни один шаг, можно утверждать, что оно функционирует устойчиво. Отработка единичных шагов происходит в соответствии с получаемыми сигналами. Начало каждого такта характеризуется нулевым значением угловой скорости. Это повторяется на каждом шаге.
Вал системы может колебаться по отношению к значению, которое установилось. Запасы кинетической энергии являются причиной данного явления. При работе возможны ее потери по разным причинам. Переходной процесс будет быстрее, если возрастает величина происходящих потерь. Наибольшая частота получаемых импульсов называется приемистостью. При ней отсутствует добавление или потеря шага на этапе обработки. Рост синхронизирующего момента приводит к возрастанию приемистости. С увеличением коэффициента нагрузки данный показатель падает.
Шаговый двигатель и принцип его работы
Что такое шаговый двигатель?
На сегодняшнее время шаговые двигатели широко используются в различной оргтехнике, автоматическом электроинструменте, в машиностроении и т. д., там, где требуется достаточно высокая точность позиционирования. Не меньшей популярностью пользуются шаговые двигатели и для изготовления самодельных ветрогенераторов.
О том, что такое шаговый двигатель и зачем он нужен, будет рассказано в данной статье строительного журнала samastroyka.ru .
Что такое шаговый двигатель?
Шаговый двигатель — это электромеханическое устройство способное преобразовывать электрический ток в дискретные (состоящие из отдельных частей) угловые перемещения ротора. Благодаря наличию в конструкции шаговых двигателей постоянного магнита, обмотка последнего способна к самовозбуждению, что позволяет использовать шаговый двигатель в качестве основного элемента ветрогенератора, который производит постоянный электрический ток от вращения лопастей под воздействием силы ветра.
Однако основное применение шаговые двигатели получили в машиностроении и в различной оргтехнике. Благодаря высокой точности и простой интеграции с посторонними приложениями цифрового управления, шаговые электродвигатели позволяют легко автоматизировать работу отдельных систем и узлов сложного устройства. Ну а отсутствие таких элементов в конструкции шагового двигателя как щетки, для передачи электроэнергии, сказывается в первую очередь на длительном сроке службы и его довольно продолжительном ресурсе.
Принцип работы шаговых двигателей
Конструкция шаговых двигателей устроена таким образом, что на статоре устройства расположено определенное количество обмоток управления, на которые последовательно подаётся напряжение. Такой подход в работе шаговых электродвигателей позволяет обеспечить дискретное изменение электрического поля внутри шагового электродвигателя и задать нужный угол перемещения оси ротора.
Существуют различные виды шаговых двигателей: однофазные, многофазные и двухфазные, с пассивным либо активным ротором. Для управления шаговым двигателем используется специальный электронный блок управления, который обеспечивает поступление на обмотки электродвигателя определенную последовательность импульсов в зависимости от фазности электродвигателя.
Преимущества и недостатки шаговых электродвигателей
Главным преимуществом шаговых двигателей, является высокая точность поворота ротора на заданный угол. Достичь такого показателя при использовании обычных щёточных электродвигателей попросту невозможно. Как следствие этому, шаговый двигатель — хорошая альтернатива сервоприводу, стоимость которого в разы выше.
Кроме того, неоспоримым преимуществом шаговых двигателей, является и их довольно продолжительный ресурс работы. Целесообразно заметить, что даже за внушительный срок эксплуатации, точность шагового двигателя падает совсем незначительно.
Что же касается недостатков шаговых двигателей, то связаны они, прежде всего с так называемым «проскальзыванием ротора» вследствие значительных нагрузок на вал электродвигателя. В большинстве случаев, избежать подобной проблемы помогает увеличение мощности шагового двигателя или установка специального датчика на своевременное обнаружение подобной проблемы.
Шаговый двигатель (Step motor)
Движение ротора в шаговом двигателе происходит за счет последовательной подачи напряжения на обмотки двигателя, после подачи напряжения на одну из обмоток, ротор фиксируется в определенном положении, а поочередная подача заставляет ротор делать так называемые шаги, именно этот факт определил название — шаговый двигатель (Step motor).
В 30-е годы прошлого столетия появились первые шаговые двигатели и сразу же получили широкое применение во всех отраслях промышленности. Сегодняшние шаговые двигатели претерпли значительные изменения, но принцип работы остался прежним.
Производители шаговых двигателей
По прошествии практически ста лет шаговый двигатель остается популярным промышленным оборудованием, а его производством занимаются многие известные производители, такие как:
- Autonics;
- Ametek;
- Beckhoff;
- CMZ;
- Delta;
- OMS;
- SanyoDenki;
- JVL.
И многие другие производители промышленного оборудования и электроники.
Драйвер шагового двигателя (Stepper driver)
За направление вращения ротора и его скорости отвечает драйвер шагового двигателя, который последовательно подает напряжение на обмотки статора, ток на обмотках определяет угол поворота вала. Драйвер шагового двигателя (Stepper driver) — это силовой модуль в задачу которого входит последовательное формирование тока питания для каждой обмотки двигателя.
Ремонт шагового двигателя и драйвера ш.д. в сервисном центре
Сервисный центр «Кернел» предлагает услуги по ремонту промышленной электроники и оборудования такого как шаговые двигатели и драйвера шаговых двигателей. В виду малого ресурсного запаса драйвера ш.д. не редко выходят из строя, обратившись в нашу компанию вы гарантированно получите глубокую диагностику промышленного оборудования, которая покажет причину выхода из строя оборудования и последующий профессиональный ремонт драйвера шагового двигателя в сжатые сроки.
Наш сервисный центр уделяет максимальное внимание на качество исполнения ремонта. Мы производим ремонт шаговых двигателей и драйверов ш.г. на компонентном уровне с использованием только оригинальных запасных частей, мы уверены в качестве выполненных работ и смело даем гарантию на все ремонтные работы 6 месяцев.
Подключение шагового двигателя, настройка и программирование
Мы ценим наших клиентов и предлагаем ремонт не только на территории сервисного центра, но и с выездом на территорию заказчика, для подключения шагового двигателя его последующую настройку и программирование.
Если вы заинтересованы в ремонте (перемотке) шагового двигателя или в ремонте драйвера шагового двигателя, вы можете оставить заявку на ремонт либо с помощью специальной форме на сайте, либо связавшись с нашими менеджерами несколькими способами:
- Заказав обратный звонок (кнопка в правом нижнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Либо позвонив по номеру: +7(8482) 79-78-54; +7(917) 121-53-01
- Написав на электронную почту: 89171215301@mail.ru
Вот далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.