0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое реакивный двигатель

Как работает реактивный двигатель?

Автор: Igor. Дата публикации: 26 апреля 2021 . Категория: Новости.

Наш технопарк превращает детей в настоящих инженеров. Здесь они проектируют и создают различные механизмы, приборы и системы. Инженеры всех времён создавали этот Мир и улучшали его, и мы надеемся, что наши кванторианцы продолжат это дело.

У инженерного ремесла множество направлений, но сегодня хочется вспомнить инженеров космической индустрии, так как совсем недавно был праздник День Космонавтики, в который мы отметили юбилей первого полёта человека в космос.

Огромным прорывом, поспособствовавшему этому событию стало создание первого реактивного двигателя – главной части космической ракеты. Он был изобретен инженерами Гансом фон Охайном и Фрэнком Уиттлом в 1930 году.

Главный советский инженер-конструктор Сергей Павлович Королёв успешно продолжил изучение реактивного движения и создал ракету «Восток-1», которая и отправила в космос первого человека – Юрия Алексеевича Гагарина.

А как же работает реактивный двигатель? Как ему удаётся двигать ракету даже в безвоздушном космическом пространстве? В этой статье ответы на эти вопросы!

Попробуйте поднять самого себя, взявшись за шнурки своих кроссовок. Получилось? Если Вы не нарушили законы физики, то вряд ли! Мы не сможем оторвать себя от земли, как бы не старались. Подлететь вверх мы можем только оттолкнувшись от пола и совершив прыжок. Но как же тогда ракета двигается в космосе? Космос – это пустота, вакуум. Там нет предметов, от которых можно оттолкнуться, чтобы получить импульс для движения. Получается, что ракета двигает сама себя, но как это получается?

Двигаться в вакууме ракете позволяет реактивный двигатель. И нет, ракета не двигает сама себя. Она всё-таки отталкивается. От чего? От собственного топлива!Чтобы понять, как это происходит, давайте вспомним третий закон Ньютона – «Действию всегда есть равное и противоположное противодействие».

Представьте, что Вы сидите на очень скользком льду. Встать и уйти невозможно. Оттолкнуться тоже никак. Вы сидите в одном положении и никак не можете двинуться с места. Что делать в такой ситуации? Нужно получить толчок извне. Да, можно позвонить другу и попросить, чтобы он кинул в Вас что-то тяжелое. Но этот способ травмоопасный и крайне неприятный. Правильнее будет вспомнить всё тот же третий закон Ньютона и получить импульс от противоположного импульса. А если по-простому – снимаем ботинок и кидаем его в сторону со всей силы. Таким образом, мы сообщаем ботинку импульс, с которым он полетит. При этом, ботинок тоже сообщает Вам импульс, направленный в противоположную сторону. Иными словами – мы толкаем ботинок, а ботинок толкает нас. Конечно, из-за разной массы, ботинок и Вы будете двигаться с разными скоростями, но всё-таки Вы начнете движение. Если бы Вы смогли метнуть ботинок с большей скоростью или если бы Вы метнули в сторону целый ящик ботинок, то Ваше движение было бы быстрее.

Именно этот закон реализуется в реактивном двигателе. Но там в сторону летят не ботинки, а поток газа.

Скорость молекул в воздухе – 1800 км/ч. А при нагревании до 2800 ̊С (такова температура газа в жидком реактивном двигателе), их скорость увеличивается в 3 раза. Выбрасывая вниз молекулы газа с такой скоростью, ракета получает и обратный импульс, направленный вверх.

Вот так и работает реактивный двигатель – в результате химической реакции топливо превращается в сильно разогретый газ, который струёй попадает в сопло двигателя. Сопло направляет эту струю в нужную сторону, и ракета начинает движение в противоположном направлении.

Реактивный двигатель был создан гениальными инженерами. А другой гениальный инженер использовал реактивное движение, чтобы открыть человечеству дорогу в космос.

В ДТ «Кванториум» много юных инженеров, и мы уверены, что кто-то из них обязательно создаст что-то не менее важное и гениальное!

Синхронные реактивные двигатели (СРД)

Введение

Появление электрического двигателя во многом способствовало развитию промышленности и улучшению качества жизни населения. В рамках второй промышленной революции произошла популяризация всех видов электрических машин, и теперь для многих создается впечатление, что эти устройства всегда находились на службе у человечества. На сегодняшний день известно множество разновидностей электрических двигателей, от широко известных двигателей постоянного тока (ДПТ), асинхронных двигателей (АД), синхронных двигателей (СД) до шаговых двигателей (ШД). Несмотря на глобальные различные, все они выполняют одну функцию – являются электромеханическими преобразователями, то есть конвертируют электрическую энергию в механическую.

А теперь представьте себе электрический двигатель с максимально простой конструкцией ротора. Это сделать довольно-таки сложно из-за сложившихся стереотипов о функционировании электрической машины, но именно так можно вкратце описать набирающие популярность Синхронные Реактивные Двигатели (с англ. Synchronous Reluctance Machine, СРД). В последнее время на эти электрические машины все больше обращают внимание производители двигателей, а также инжиниринговые компании по всему миру, и не случайно. Давайте разберемся, что же из себя представляют СРД.

Синхронный Реактивный Электродвигатель – синхронная машина, вращающий момент которой обусловлен неравенством магнитных проводимостей по поперечной и продольной осям ротора, не имеющего обмоток возбуждения или постоянных магнитов – такое определение дает ГОСТ 27471-87.

Принцип работы синхронного реактивного двигателя

Переменный ток, проходящий по обмоткам статора, создает вращающееся магнитное поле в воздушном зазоре электродвигателя. Крутящий момент создается когда ротор пытается установить свою наиболее магнито — проводящую ось (d-ось) с приложенным к нему полем, чтобы минимизировать сопротивление в магнитной цепи. Иными словами, вращающееся магнитное поле статора увлекает за собой ротор. Амплитуда потока статора управляется через ось d, тогда как ток, отвечающий за момент управляется через ось q. Оси приведены к статору двигателя.

В рассмотренном исполнении ротора разницы между магнитными сопротивлениями осей добиваются за счет увеличения воздушного зазора по оси q. Амплитуда момента прямо пропорциональна разнице между продольной Ld и поперечной Lq индуктивностями. Следовательно, чем больше разница, тем больше создаваемый момент. Математически это можно выразить с некоторыми допущениями, рассмотрев формулу электромагнитного момента для синхронной явнополюсной машины без возбуждения на роторе:

Читать еще:  Газель некст двигатель cummins сколько масла

Мр = [mU 2 /(2ω1 )] (1/Хq — 1/Хd ) sin 2θ,

где m=3 для трехфазного исполнения статора, ω1- угловая скорость ротора, Xq -индуктивное сопротивление по оси q ротора, Xd — индуктивное сопротивление по оси d ротора, θ-угол между полем ротора и полем статора, характеризующий степень растянутости «магнитной пружины».

Таким образом, в отличие от синхронной машины с обмоткой возбуждения, синхронная реактивная машина в классическом представлении имела меньший момент, а также невысокий коэффициент мощности и коэффициент полезного действия (КПД). Объяснялось это значительным намагничивающим током статора, так как возбуждение происходит за счет реактивной составляющей тока. Пуск таких двигателей осуществлялся за счет демпфирующей короткозамкнутой обмотки, т.е. имел место асинхронный пуск синхронного двигателя. Но на сегодняшний день, СРД успешно эксплуатируются в комплекте с преобразователями частоты (ПЧ) YASKAWA GA700 и ПЧ GA500. Пуск происходит благодаря алгоритму, заложенному в ПЧ (управление током намагничивания id статора и током статора, отвечающим за момент iq), следовательно, необходимость асинхронного пуска устраняется. В итоге, коэффициент мощности и КПД у современных СРД заметно увеличился, а конструкция ротора стала максимально простой. В среднем у синхронных реактивных двигателей остается худший коэффициент мощности на 5-10% из-за принципиальных особенностей работы, но на 5- 8 % лучший КПД в сравнении с асинхронными двигателями как в номинальном режиме, так и при работе на всем диапазоне скоростей при регулировании скорости вниз от номинала.

Наибольший интерес у разработчиков систем электропривода вызвала конструкция СРД. Статор реактивного двигателя бывает с распределенной и сосредоточенной обмоткой. То есть, статор двигателя идентичен статору широко используемого асинхронного двигателя.

Особенно интересен ротор, который представляет собой вал с болванкой из шихтованной стали. На роторе отсутствуют обмотки, а также постоянные магниты.
Выделяют три основных типа ротора реактивного двигателя: ротор с явно выраженными полюсами, аксиально-расслоенный ротор и поперечно-расслоенный ротор.

а) Ротор с явно выраженными полюсами

б) Аксиально-расслоенный ротор

в) Поперечно-расслоенный ротор

Отличительная особенность синхронных реактивных двигате­лей (СРД) — отсутствие в них возбуждения со стороны ротора. Основной магнитный поток в этом двигателе создается исключительно за счет вращающейся МДС обмотки статора.

Так как, СРД – синхронная машина, то его механическая характеристика в разомкнутой системе будет абсолютно жесткой.


Достоинства и недостатки синхронного реактивного двигателя:

Преимущества СРД:

1. Простота и надежность ротора, состоящего из тонколистовой электротехнической стали, без магнитов и короткозамкнутой обмотки;

2. Низкий нагрев. Так как в роторе нет обмоток, поэтому через него не протекает активный ток с выделением тепла. Это положительно сказывается на сроке жизни подшипников, а также на коэффициенте полезного действия системы. Так как снижаются потери на нагрев, то номинальный ток двигателя может быть завышен, что позволяет получить (при аналогичной мощности) более высокий момент (на 20-40%), чем у асинхронного двигателя.

3. Отсутствие магнитов. Из-за этого снижается конечная цена двигателя, так как при производстве не используются редкоземельные элементы.

4. Низкий момент инерции ротора. Так как ротор представляет собой болванку без магнитов и обмоток, которые увеличивают этот показатель в асинхронных двигателях и двигателях с постоянными магнитами. Соответственно, уменьшается типоразмер двигателей. Из чего вытекает следующее преимущество.

5. Меньшие габариты при той же мощности в сравнении с АД.

6. Высокий КПД и cosφ (косинус фи). При работе от сети, а такие двигатели в старых системах работали от сети и снабжались дополнительной пусковой обмоткой на роторе, СРД демонстрировали не лучшие энергетические показатели, но применяя специализированный преобразователь частоты, например, YASKAWA GA700 и GA500, разработанный для работы с синхронными реактивными двигателями, картина в корне меняется. В таких преобразователях происходит разделение между сетью и питающим напряжением двигателя, а программное обеспечение позволяет корректировать выходной ток, создавая наиболее благоприятные условия работы двигателя (в GA700 режим EZOLV). Таким образом СРД оставляет за собой все преимущества, описанные выше, избегая недостатков возникавших ранее при работе от сети. Если все – таки происходит снижение коэффициента мощности, это может означать, что для данного применения должен быть выбран преобразователь на больший номинальный ток.

7. Абсолютно жесткая механическая характеристика в разомкнутой системе. Это говорит о том, что двигатель способен поддерживать скорость на заданном уровне с большой точностью, до тех пор, пока момент не превысит максимальное значение.

Недостатки СРД:

1. Пуск и работа СРД возможны только от преобразователя частоты. Бездатчиковая система управления отслеживания положения ротора является необходимым условием работы синхронного реактивного двигателя. Преобразователь в каждый момент времени отслеживает потребляемый ток двигателя, так как при повороте вала изменяется магнитное сопротивление в зазоре, и формирует магнитное поле в соответствии с этим изменением, добиваясь высокой производительности.

2. Низкий коэффициент мощности при работе с ослаблением поля. СРД демонстрируют лучшие энергетические показатели при работе в зоне насыщения. При выходе на повышенную скорость, необходимо уменьшить ток намагничивания машины id, в результате чего, заметно упадет момент двигателя, а коэффициент мощности резко снизится в следствие потребления большего реактивного тока. Поэтому для применений в которых осуществляется работа на повышенных скоростях такие двигатели лучше не использовать.

Заключение:

Синхронные реактивные двигатели являются перспективным направлением для интеграции в новые системы и для модернизации старых систем электропривода. Больший КПД на всем диапазоне скоростей в сравнении с СДПМ и АД способствует в пользу выбора этого двигателя при разработке новых систем, соответствующих международному стандарту энергоэффективности IE4. Простота конструкции ротора и проверенная технология изготовления статора позволяют такому двигателю легко найти свое применение в насосных агрегатах и вентиляторах, а также в применениях с постоянным моментом и регулированием скорости вниз от номинала. Единственной проблемой такого двигателя является потребление большего реактивного тока в сравнении с асинхронными двигателями, но при использовании частотного преобразователя YASKAWA GA700 и GA500 этот недостаток легко устраняется.

Читать еще:  D4cb на что ставят этот двигатель

Ядерные двигатели в крылатых ракетах. Досье

ТАСС-ДОСЬЕ. 19 июля 2018 года в Минобороны сообщили журналистам, что Россия готовится провести летные испытания опытных образцов усовершенствованной крылатой ракеты «Буревестник» с ядерным двигателем. В ведомстве указали, что малозаметная крылатая ракета с практически неограниченной дальностью, несущая ядерную боевую часть, является неуязвимой для всех существующих и перспективных систем как противоракетной, так и противовоздушной обороны.

Редакция ТАСС-ДОСЬЕ подготовила справочный материал о проектах использования ядерных двигателей в крылатых ракетах.

Ядерные двигатели

Идея использовать ядерные двигатели в авиации и космонавтике возникла в 1950-х годах вскоре после создания технологии управляемой атомной реакции. Плюсом такого двигателя является длительное время работы на практически не расходуемом в полете компактном источнике топлива, что означает неограниченную дальность полета. Минусами были большой вес и габариты атомных реакторов того времени, сложность их перезарядки, необходимость обеспечения биологической защиты обслуживающего персонала. С начала 1950-х годов ученые СССР и США независимо друг от друга изучали возможность создания разных типов атомных двигателей:

  • ядерный прямоточный воздушно-реактивный двигатель (ЯПВРД): в нем поступающий через воздухозаборник воздух попадает в активную зону реактора, нагревается и выбрасывается через сопло, создавая нужную тягу;
  • ядерный турбореактивный двигатель: действует по похожей схеме, но воздух перед попаданием в реактор сжимается компрессором;
  • ядерный ракетный двигатель: тяга создается за счет нагрева реактором рабочего тела, водорода, аммиака, других газов или жидкостей, которые затем выбрасываются в сопло;
  • ядерный импульсный двигатель: реактивную тягу создают поочередные ядерные взрывы малой мощности;
  • электрореактивный двигатель: вырабатываемая реактором электроэнергия используется для нагрева рабочего тела до состояния плазмы.

Наиболее подходящими для крылатых ракет и самолетов являются прямоточный воздушно-реактивный или турбореактивный двигатель. В проектах крылатых ракет предпочтение традиционно отдавалось первому варианту.

Советские проекты

В СССР работами по созданию ядерного прямоточного воздушно-реактивного двигателя занималось ОКБ-670 под руководством Михаила Бондарюка. ЯПВРД был предназначен для модификации межконтинентальной крылатой ракеты «Буря» («изделие 375»), которую с 1954 года проектировало ОКБ-301 под руководством Семена Лавочкина. Стартовый вес ракеты достигал 95 т, дальность должна была составить 8 тыс. км. Однако в 1960 году через несколько месяцев после смерти Лавочкина проект «обычной» крылатой ракеты «Буря» был закрыт. Создание же ракеты с ЯПВРД так и не вышло за рамки предэскизного проектирования.

Впоследствии специалисты ОКБ-670 (переименованного в КБ «Красная Звезда») занялись созданием ядерных ракетных двигателей для космических и боевых баллистических ракет, однако ни один из проектов так и не дошел до стадии испытаний. После смерти Бондарюка работы над авиационными ядерными двигателями были фактически прекращены.

К ним вернулись лишь в 1978 году, когда при НИИ тепловых процессов было образовано конструкторское бюро из бывших специалистов «Красной Звезды», занимавшееся прямоточными воздушно-реактивными двигателями. Одной из их разработок стал ядерный прямоточный воздушно-реактивный двигатель для более компактной, по сравнению с «Бурей», крылатой ракеты (стартовой массой до 20 т). Как писали СМИ, «проведенные исследования показали принципиальную возможность реализации проекта». Однако о ее испытаниях не сообщалось.

Само КБ просуществовало под различными названиями (НПВО «Пламя», ОКБ «Пламя-М») до 2004 года, после чего закрыто.

Опыт США

С середины 1950-х годов ученые Радиационной лаборатории в Ливерморе (штат Калифорния) в рамках проекта Pluto разрабатывали ядерный прямоточный воздушно-реактивный двигатель для сверхзвуковой крылатой ракеты.

К началу 1960-х годов были созданы несколько прототипов ЯПВРД, первый из которых — Tory-IIA — был испытан в мае 1961 года. В 1964 году начались испытания новой модификации двигателя — Tory-IIC, который смог проработать пять минут, показав тепловую мощность около 500 МВт и тягу в 16 т.

Однако вскоре проект был закрыт. Традиционно считают, что причиной этого как в США, так и в СССР стало успешное создание межконтинентальных баллистических ракет, способных доставить ядерные боезаряды на территорию противника. В этой ситуации межконтинентальные крылатые ракеты не выдержали конкуренции.

В России

1 марта 2018 года, выступая с посланием Федеральному собранию РФ, президент России Владимир Путин сообщил, что в конце 2017 года на Центральном полигоне Российской Федерации была успешно испытана новейшая крылатая ракета с ядерной энергоустановкой, дальность полета которой «является практически неограниченной». Ее разработка была начата после выхода США в декабре 2001 года из Договора об ограничении систем противоракетной обороны 1972 года. Название «Буревестник» ракета получила 22 марта 2018 года по итогам открытого голосования на сайте Минобороны.

Новый реактивный двигатель на основе воздушной плазмы

Прототип оригинального реактивного двигателя на основе воздушной плазмы может создавать тягу без использования ископаемого топлива, что потенциально позволит решить проблему экологичных воздушных перевозок. Устройство ионизирует воздух микроволнами, генерируя плазму, которая создает тягу. Таким образом, самолеты могут когда-нибудь летать, используя только электричество и воздух вокруг них.

Прототип двигателя, работающего на воздушной плазме создали китайские ученые из Уханьского университета. Исследователи нашли способ создать струю плазмы за счет сильного сжатия воздуха и использования микроволнового излучения для ионизации потока.

Сейчас прототип способен создать струю воздуха, которая может поднять стальной шарик весом один килограмм над трубкой диаметром 24 миллиметра. При увеличении масштабов тяга будет сравнима с показателями реактивных двигателей.

Прототип концепта и серийная реализация двигателя

Между прототипом проверенного концепта и установкой двигателя на реальном самолете предстоит долгий путь. Но прототип смог создать тягу, запустив в воздух стальной шарик весом в один килограмм (2,2 фунта) на 24 миллиметра. Это та же тяга, пропорциональная масштабу, что и у обычного реактивного двигателя.

Читать еще:  Холодный двигатель стал дымить

«Наши результаты показали, что такой реактивный двигатель на основе микроволновой воздушной плазмы может быть потенциально жизнеспособной альтернативой обычному реактивному двигателю на ископаемом топливе», — сказал в своем пресс-релизе ведущий исследователь и инженер Уханьского университета Джау Тан.

Китайские ученые продемонстрировали в лабораторных условиях прототип микроволнового плазменного двигателя, способного работать в атмосфере Земли и создавать тягу с эффективностью, сравнимой с реактивными двигателями, которые используются на современных авиалайнерах.

Воздушно-плазменное реактивные двигатели — новый подход к решению проблемы

В предлагаемом опытном образце реактивного двигателя используется воздушная плазма, индуцированная микроволновой ионизацией. Такой реактивный двигатель просто использует воздух и электричество для получения высокой температуры и плазмы под давлением для создания реактивной силы. Исследователи продемонстрировали, что при одинаковом энергопотреблении его тяга сопоставима с тягой обычных реактивных двигателей самолетов, использующих ископаемое топливо. Следовательно, такой двигатель без выбросов углерода может потенциально использоваться в качестве реактивного двигателя в атмосфере.

В конструкции двигателя используется воздушный компрессор для создания начальной скорости воздуха, затем ионизируется воздух в плазму и нагревается до высоких температур и давлений с помощью мощного микроволнового излучателя

Подобно твердым телам, жидкостям и газам, плазма является нормальным состоянием вещества. Плазма естественным образом возникает вследствие ионизации молекул при высоких температурах (например, на солнце) или в сильных электрических полях (например, при молнии). В лаборатории плазма может генерироваться с использованием электрической дуги, микроволнового резонатора, лазера, пламени огня или высоковольтного разряда.

Плазма имеет широкое применение во многих областях, в т. ч. на реактивных двигателях космических кораблей, использующих ксеноновую плазму. При этом она создает небольшую тягу и может использоваться только в космическом безвоздушном пространстве.

Плазменные двигатели уже применяются на космических кораблях в качестве средства солнечно-электрического передвижения, использующего плазму ксенона, но такие вещи бесполезны в атмосфере Земли, поскольку ускоренные ионы ксенона теряют большую часть своей силы тяги из-за трения о воздух. Не говоря уже о том, что они не создают достаточной тяги.

Новый проект, разработанный и созданный группой специалистов из Института технических наук Уханьского университета, использует только воздух и электричество и, по-видимому, произведет впечатляющий прорыв, который может привести к тому, что он станет актуальным для применения в электрических самолетах.

Воздушно-плазменное реактивное устройство работает путем ионизации воздуха, чтобы создать низкотемпературную плазму, которая продувается воздушным компрессором. На полпути вверх по трубе в ионизационной камере на плазму воздействует мощный микроволновый излучатель частотой 2,45 ГГц, который сильно «встряхивает» ионы в плазме, разбивая их о другие неионизированные атомы и значительно повышая температуру и давление плазмы. Эта температура и давление создают значительную силу тяги.

В предлагаемом прототипе плазменного реактивного двигателя может генерироваться приблизительно 11 Н тяги при 400 Вт мощности, используя 0,5 л / с для воздушного потока, что соответствует тяге 28 Н / кВт и давлению струи 2,4 × 10 4 Н / м2. При более высокой микроволновой мощности или большем потоке воздуха могут быть достигнуты силы тяги и реактивные давления, сравнимые с показателями реактивных двигателей коммерческих самолетов.

Исследователи проверили параметры в диапазоне различных уровней мощности и скоростей воздушного потока, и, несмотря на несколько импровизированную технику измерения, они обнаружили линейную зависимость между движущей силой тяги и микроволновой мощностью, а также воздушным потоком.

Реальные достижения и обоснованные сомнения

С точки зрения эффективности, движущая сила при 400 Вт и 1,45 кубических метров воздуха в час составила 11 Ньютонов, что представляет собой преобразование мощности в тягу 27,5 Н / кВт. Предполагая линейную экстраполяцию, команда предположила, что она может взять батарею Tesla Model S, способную выдавать мощность 310 кВт, и превратить ее в нечто вроде силы тяги в 8500 Н.

Для сравнения, в электрическом самолете Airbus E-Fan используется пара вентиляторов с электроприводом мощностью 30 кВт, которые в совокупности производят 1500 Н тяги. Это подразумевало бы высокие показатели — около 25 Н / кВт, что не так хорошо, как у первого прототипа, собранного в этой лаборатории.

Исследователи утверждают, что эффективность тяги уже сравнима с эффективностью реактивных двигателей коммерческих самолетов. Исследователи уже работают над отказом от метода испытаний стальных шариков для чего-то более надежного и точного, а также пытаются повысить эффективность конструкции. Но уже полученные результаты, безусловно, выглядят многообещающими для этой новой идеи плазменного двигателя в двигателе электрического самолета, с несколькими важными оговорками.

Во-первых, в eVTOL не будет большой замены в качестве замены оборудования или канального вентилятора, независимо от того, насколько тише он может работать, если эта плазма выходит при температурах в тысячи градусов. И, во-вторых, как было отмечено в анализе Ars Technica , «воздушные потоки примерно в 15 000 раз ниже, чем у полноразмерного двигателя. Тяга также должна масштабироваться примерно на четыре порядка (то есть мощность тоже.) Экстраполяция линейных трендов на четыре порядка — хороший способ разочароваться в жизни».

Кроме того, по какой-то причине точки данных не показывают самые высокие уровни микроволновой мощности при самых высоких воздушных скоростях, которые, как кажется, позволяет испытательный стенд, сигнализируя о том, что в лаборатории уже могут начаться странные вещи.

И, наконец, даже если он является настолько же эффективным или более эффективным, чем обычный старый двигатель Airbus для данного количества потребляемой энергии, факт остается фактом: авиационное топливо несет гораздо больше энергии для данного веса, чем батареи. Тем не менее, это интересная и новая конструкция плазменного двигателя, и интересно посмотреть, что из этого выйдет. Если он окажется масштабируемым и эффективным до уровня, благоприятного для воздушных судов, он может внести реальный вклад в развивающуюся область электрической авиации с нулевыми локальными выбросами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector