Что такое паравой двигатель
Создатель «пыхтящего дьявола»
С ын управляющего одной из шахт Ричард с детства любил наблюдать, как паровые машины качают воду из глубоких оловянных и медных рудников. И в девятнадцать лет он поступил на работу в шахту East Stray Park рабочим по обслуживанию этих машин.
Его дальнейшей карьере помогло то, что он женился на Джейн Харви из Хейла. Джон Харви, отец Джейн, построил местный литейный завод Harveys of Hayle, известный созданием огромных машин для перекачки воды из шахт на основе двигателей Ньюкомена и Ватта.
Гигант пара
В 1797 году Тревитик уже работал инженером на шахте Динг-Донг и здесь увлекся идеей усовершенствования паровой машины. Вместе с Эдвардом Буллом он впервые применил в разработанном им новом варианте парового двигателя пар высокого давления, что позволило уменьшить габариты паровых агрегатов при той же мощности. Молодой инженер не обращал внимания на страхи именитых коллег, в том числе самого создателя паровой машины Уатта, который считал весьма опасным работать с паровыми машинами при повышенном давлении. Как писал Уатт, «только убийца, ни во что не ставящий человеческую жизнь, может настаивать на применении пара в семь-восемь атмосфер».
Уменьшение габаритов паровой машины, которого добился Тревитик, позволило ему заняться конструированием экипажей на паровом ходу, идею которых он почерпнул у Уильяма Мердока, соратника Уатта. Мердок жил в Редруте и был соседом Тревитика, который в то время занимался там установкой двигателей для откачки воды в местных шахтах. Еще в 1784 году Мердок построил трехколесный экипаж на паровой машине, который однажды поздно вечером испытал на дороге — к ужасу местного священника, решившего, что он увидел дьявола. Но дальше этой пробы у Мердока дело не пошло.
Возможно, Мердок заимствовал эту идею у Джеймса Уатта, который тоже задумывался над тем, как использовать паровую машину для создания колесного транспортного средства, и даже сделал эскиз возможной конструкции, но отбросил эту идею: слишком велики тогда были размеры паровой машины.
А Ричард Тревитик, используя свои достижения по усовершенствованию паровой машины, уже в 1801 году построил самодвижущуюся повозку на паровом двигателе, которая произвела настоящий фурор на улицах небольшого городка Кэмборна, куда переселился изобретатель. Местные сразу окрестили изобретение «драконом Тревитика» и «фугасом капитана Дика». (Корнуэльских управляющих шахтами в знак уважения называли капитанами). Посмотреть на паровой экипаж ежедневно собиралась большая толпа зевак, некоторых Тревитик, бывало, брал с собой в поездку. Это была первая в истории публичная демонстрация транспорта, работающего на пару.
Но «дракон» недолго веселил публику: однажды Тревитик остановился перед пабом, чтобы перекусить, но забыл уменьшить огонь, подогревающий котел, в результате вода в нем выкипела, емкость раскалилась, и вся машина сгорела за несколько минут. Однако Тревитика, уже прославившегося своим оптимизмом, это происшествие ничуть не смутило, и он продолжил опыты с еще большим рвением. Тревитик спроектировал еще одну коляску, на которой сделал несколько пробегов в Лондоне, рассчитывая собрать средства на продолжение работ, но, к сожалению, это ему не удалось. Тем не менее он получил официальный патент на свою «машину высокого давления» и ее разнообразные применения, в том числе в транспорте.
Поймай меня, если сможешь
Современники описывали Тревитика как человека, которого переполняли новые идеи. Поэтому он не остановился на создании своего «дракона», и в 1804 году, будучи инженером уже на Пенидарренском чугунолитейном заводе в Мертир-Тидвиле, создал первый в истории паровоз, который протащил пять фургонов, десять тонн железа и семьдесят человек на расстояние более девяти миль со средней скоростью около пяти миль в час.
Первый локомотив работал исправно, однако слабые чугунные рельсы часто ломались под его тяжестью. Владелец предприятия, на путях которого проводились испытания, вместо того чтобы усилить рельсы, распорядился прекратить поездки и использовать паровоз просто в качестве паровой машины.
Через год, в 1805-м, Тревитик построил второй паровоз для рудников близ Ньюкасла, но рельсы и там оказались слабыми.
А в 1808 году на окраине Лондона Ричард выбрал площадку, которую огородили высоким забором и построили там кольцевую рельсовую дорогу, по которой Тревитик запустил новый паровоз под названием «Поймай меня, если сможешь». Все желающие могли посмотреть на диковинное изобретение или прокатиться на нем за определенную плату. Но вскоре рельсы сломались и здесь. Ричард надеялся, что его опытами заинтересуются владельцы различных фабрик и профинансируют продолжение работ, однако ошибся.
К слову, именно опыты Тревитика подтолкнули изготовителей рельсов заменить чугун на железо. Рельсы из сварочного железа впервые применил в Англии инженер Никсон в 1803 году. К 1820-му производство железных рельсов в Англии было уже хорошо освоено.
Много изобретений и мало денег
Потерпев неудачу с продвижением своего паровоза, Тревитик в 1812 году сконструировал компактную паровую молотилку. Она исправно работала в течение многих лет, после чего была выставлена в одном из лондонских музеев, где и хранится до сих пор.
По заказу морского ведомства Тревитик соорудил паровую землечерпалку для углубления дна Темзы, разработал проект парового судна и участвовал в неудавшейся прокладке тоннеля под Темзой.
Вся эта деятельность приносила мало доходов, и в поисках новых заказов он знакомится с владельцем серебряных рудников в Перу, прибывшим в 1813 году в Англию. Многие шахты этих рудников с увеличением глубины разработок заливала вода. Тревитик охотно согласился руководить постройкой паровых насосов для шахт и даже вложил в дело имевшийся у него небольшой капитал.
Через год требуемое число паровых машин было готово и отправлено в сопровождении английских механиков в Перу. Понадобилось почти два года, чтобы они прибыли на место. Только в 1816 году была успешно запущена одна из машин, но остальные из-за неопытности механиков пустить в работу не удавалось. Получив известие об этом, Тревитик отплывает в Южную Америку. По прибытии он быстро запускает все насосы, и добыча серебра резко возрастает.
Благодаря этому Тревитик завоевал настолько огромный авторитет у местных горнопромышленников, что губернатор провинции даже предложил отлить его статую из серебра. Однако у изобретателя не сложились отношения с руководством компании, он вынужден был покинуть рудники и некоторое время разъезжал по Перу, обучая местных горнопромышленников «европейским» приемам работы.
После смерти руководителя компании серебряных рудников он возвращается к прежней работе и становится главой предприятия. Дела компании шли хорошо, но в 1821 году в Перу, тогда испанской колонии, вспыхивает восстание против испанцев. Заодно повстанцы разгромили оборудование рудников, и Тревитик лишился всего состояния (и едва не лишился жизни).
Он покидает Перу и переезжает вначале в Чили на медные рудники, а затем в Коста-Рику. Здесь он изучает работу местных рудников и вместе с компаньоном проводит изыскания новых месторождений серебра и меди, которые он собрался разрабатывать. Для этого Тревитику был необходим капитал. Чтобы достать его, он после десятилетнего пребывания в Южной Америке решает вернуться в Англию. Но на родине Тревитика ждало разочарование: денег достать не удалось. И он снова начал заниматься изобретательской деятельностью.
Тревитик разработал проект боевого корабля с металлическим корпусом и паровым двигателем, плавучий паровой насос для осушения залитой местности (он намеревался использовать его в Голландии), проект устройства парового отопления жилых помещений. Но и эти, и другие его проекты по разным причинам так и не были реализованы.
Конец жизни Тревитик прожил в бедности. Он даже вынужден был обратиться в английский парламент с просьбой о финансовой помощи. Перечислив в своем прошении все свои важнейшие, по его мнению, изобретения, он завершил просьбу словами: «Проситель, однако, надеется, что его важные изобретения и усовершенствования не останутся не вознагражденными английской нацией, тем более что он до сих пор не получал ничего за убытки, которые он сам и его семья терпели благодаря тому, что он истратил свое состояние для общественного блага».
Крик о помощи не был услышан, и вскоре, 22 апреля 1833 года, создатель первого в мире паровоза умер. Похоронили Тревитика на кладбище для бедняков. Впоследствии место захоронения затерялось.
Но все же о достижениях великого изобретателя не забыли. В Кэмборне ему поставили памятник, в Дартфорде, где он умер, установили мемориальную доску, посвященную последним годам его жизни. А в Кардиффском университете библиотека названа его именем.
Последователи
Тревитик был первым, но не единственным, кто пытался поставить паровую машину на колеса. Джордж Стефенсон, работавший кочегаром на рудниках и в совершенстве изучивший имевшиеся там паровые машины, тоже решил создать собственный паровоз.
Работа над постройкой локомотива длилась десять месяцев. Первое испытание паровоза Стефенсона состоялось 25 июля 1814 года на путях рудника в Килингворте близ Ньюкасла. Паровоз в тот день провез состав из восьми груженых вагонов весом 30 тонн со скоростью около семи километров в час. После успешных испытаний паровоз начал регулярную перевозку грузов. В последующие годы Стефенсон построил еще несколько моделей паровоза, улучшая раз за разом его конструкцию.
Наряду с улучшением механической части паровоза Стефенсон занялся усовершенствованием рельсового пути, чтобы повысить его надежность и устранить тряску. В 1816 году он получил патент на усовершенствованный им рельсовый стык, что позволило значительно смягчить удары при проходе через него колес подвижного состава.
После этого Стефенсон занялся постройкой первой в мире железной дороги общественного пользования Стоктон — Дарлингтон. День ее открытия, 27 сентября 1825 года, считается днем основания железных дорог. Тогда при огромном стечении зрителей паровоз, ведомый Стефенсоном, повез состав из 38 вагонов, часть из которых была загружена углем и мукой. А 21 вагон был оборудован сиденьями для публики.
В России историю паровозостроения начали Ефим и Мирон Черепановы — создатели первого российского паровоза. Они начали работать над своей машиной в 1830 году. «Пароходный дилижанец» — именно так назвали свое творение Черепановы — был готов в 1834 году. Паровоз Черепановых был рассчитан на перевозку руды и развивал скорость до 15 километров в час. Но их машина оказалась не востребована. Паровозы для железных дорог, которые стали строить в России, приобретались за рубежом.
Кто изобрел первую паровую машину
Паровая машина пожарных. Фото: pixabay.com
Ровно 322 года назад, 2 июля 1698 года, англичанин Томас Севери получил патент на первую в мире паровую машину. А впервые применили её в пожарной установке.
Впервые паровой двигатель был применён в производстве «пожарной установки», сконструированной в 1698 году английским военным инженером и изобретателем Томасом Севери (англ. Thomas Savery; 1650-1715). С дозволения короля Вильгельма III 2 июля того же года учёный получил патент на своё устройство.
Патентная заявка гласила: «Это новое изобретение для подъёма воды и получения движения для всех видов производства при помощи движущей силы огня имеет большое значение для осушки рудников, для водоснабжения городов и как источник движущей силы для фабрик — тех, что не могут использовать силу воды или работу ветра».
Однако изобретение оказалось не слишком эффективным — поскольку тепло пара каждый раз терялось во время охлаждения контейнера. К тому же насос был довольно опасным в эксплуатации, ведь из-за высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались.
Тем не менее, вскоре паровая машина Севери нашла довольно широкое применение в промышленности: с ее помощью стали откачивать воду из угольных шахт. Изобретатель в шутку называл свое детище «другом рудокопа».
Читайте также:
В 1707 году паровая машина Севери появилась в России. Царь Петр Первый приказал установить ее в Летнем саду, для того, чтобы качать воду из Фонтанки для парковых фонтанов. Машина поднимала воду на высоту 3 метров от поверхности земли. Её производительность была 3 бочки в минуту.
Интересное за неделю
«Парламентская газета» — официальное еженедельное издание Федерального Собрания РФ. Издается с 1997 года. Учредители газеты — Государственная Дума и Совет Федерации РФ. Издание является официальным публикатором федеральных законов, постановлений, актов и других документов Федерального Собрания. «Парламентская газета» имеет пункты печати и представительства в десяти субъектах федерации. Распространяется по подписке и в розницу, в органах исполнительной и представительной власти федерального и регионального уровня, в поездах дальнего следования и «Сапсан», в самолетах ГТК «Россия», «Аэрофлот», а также региональных авиакомпаний.
Сайт «Парламентской газеты» — это оперативные новости и достоверная информация о принимаемых в стране законах и деятельности депутатов и сенаторов. При использовании материалов сайта «Парламентской газеты» активная ссылка на pnp.ru обязательна.
В рубрике «Деловая экспертиза» могут публиковаться материалы на правах рекламы
Паровые установки для выработки электро- и тепловой энергии
Исторически под паровой машиной понимали работающий на водяном паре тепловой двигатель поршневого типа, а когда были изобретены паровые турбины, подобные двигатели часто стали называть турбомашинами.
Дешевые виды местного твердого топлива из биомассы (дрова, древесные пеллеты, брикеты, щепа, опилки) используются для генерации электроэнергии или когенерации, для чего разработаны несколько технологий. Основные:
- газификация — получение низкокалорийного горючего (генераторного) газа с его последующим использованием в газопоршневом двигателе, приводящем в действие электрогенератор;
- сжигание твердого топлива в паровом котле и использование полученного пара для работы паровой турбины;
- сжигание твердого топлива в паровом котле и использование пара для работы поршневого парового двигателя (классической паровой машины или парового поршневого двигателя).
Паровой двигатель Spilling
Газовый детандер Spilling
Главным достоинством современных паровых поршневых двигателей (машин) по сравнению с маломощными (особенно одноступенчатыми) паровыми турбинами является меньший удельный расход пара при равных параметрах давления и температуры пара на входе и выходе и при одинаковой мощности паровой машины и паровой турбины. К плюсам классических паровых машин также надо отнести, по сути, постоянный удельный расход пара при изменении нагрузки в широких пределах (в отличие от двигателей внутреннего сгорания — ДВС) при постоянной частоте вращения (работе на синхронный электрогенератор).
А теперь сравним паропоршневые установки (ППУ) с газопоршневыми (ГПУ). Для работы ГПУ в качестве топлива используется не только природный газ, но и с недавнего времени биогаз и генераторный газ, полученный в результате газификации биомассы. При работе классического поршневого двигателя на генераторном газе мощность двигателя падает до 60%. Но если сравнивать с классической паровой машиной, для работы которой используется водяной пар, то, согласно термодинамическому циклу Карно, его экономичность выше за счет того, что температура продуктов сгорания в ГПУ выше температуры пара, ограниченной теплостойкостью материалов парового котла. Однако при работе ГПУ горючий газ высокой температуры необходимо охлаждать перед подачей в цилиндр газопоршневого двигателя, а это приводит к сбросу во внешнюю среду около 20% теплоты сгорания твердого топлива и делает ГПУ неконкурентоспособным классической паровой машине. Принципиальным отличием паропоршневых двигателей от газопоршневых является наличие у первых накопителя энергии — парогенератора (парового котла), который играет роль пароводяного аккумулятора. Большое значение имеет и стабильность рабочего тела (пара). Отсюда следует, что кратковременные остановки котла не приведут к немедленной остановке самой паровой машины. Чего не скажешь о газопоршневом двигателе, в котором при загрузке газогенератора топливом возможно изменение состава газа, а это может привести к остановке двигателя. Существенное преимущество паровых двигателей заключается также в том, что для работы специализированных паровых котлов можно использовать биомассу (щепу или дрова) естественной влажности, а для газогенераторных установок влажность сырья, как правило, не должна превышать 20%. К тому же ГПУ требует более тщательного ухода, в отличие от паропоршневого двигателя. Преимуществами ППУ перед ГПУ и ДВС являются высокая выносливость и долговечность, простота обслуживания и ремонта и возможность работы, по сути, на любом виде дешевого местного твердого топлива. Последнее условие важно, потому что обеспечивает возможность широкого использования топливных ресурсов на местах и независимость от привозного топлива (к примеру, от топлива так называемого северного завоза в России).
Выше мы сравнивали паровые машины с газопоршневыми двигателями, которые работают на газифицированной биомассе. Понятно, что при работе ГПУ на природном газе при генерации только электроэнергии их преимущество неоспоримо. Однако при когенерации расклад не в пользу ГПУ; утилизировать тепловую энергию выхлопных газов значительно сложнее, чем тепловую энергию выхлопа паровой машины, т. к. коэффициент теплоотдачи конденсирующегося пара в теплообменнике в десятки раз выше коэффициента выхлопного газа ГПУ. Паровая машина экологичнее за счет меньшего объема выбросов NO и CO. Работающие паровые двигатели замкнутого цикла менее шумные, чем ГПУ и ДВС. Паровая машина вполне может конкурировать и с паровой турбиной мощностью 1000-2500 л. с. Конечно, по размерам и весу паровые машины больше в сравнении и превосходят паровые турбины, но за счет меньшей частоты вращения вала ППУ нет необходимости устанавливать редуктор. Ведутся и разработки компактных поршневых паровых двигателей. Например, компания из США Cyclone Power Technologies Inc. разработала паропоршневой двигатель со звездообразным расположением цилиндров мощностью 75 кВт, КПД 31,5% — по аналогии с бензиновыми авиационными моторами, которые используются до сих пор на труженике советской и российской авиации — знаменитом биплане Ан-2.
Использование паровых машин
За рубежом в малой энергетике (мини-ТЭС) вместо малых паровых турбин успешно используются паровые машины, или, как сегодня принято говорить, паропоршневые (паровые) моторы или двигатели. Основной отличительный признак паропоршневых моторов от паровых машин — иной тип парораспределения. Паропоршневые моторы предназначены для работы с однократным расширением пара: пар из котла поступает параллельно во все цилиндры, подобно тому как поступает топливно-воздушная смесь в цилиндры ДВС. А в классических паровых машинах пар проходит через все цилиндры последовательно и расширяется многократно.
Мировую известность получили немецкие паровые моторы фирмы Spilling. Это одноступенчатые поршневые паровые машины противодавленческого типа с системой золотникового расширения пара, отличающиеся от других современных паровых машин, которые работают по многоступенчатому принципу. К сожалению, у модельного ряда паровых машин Spilling очень узкий диапазон мощности: от 100 кВт до 1,2 мВт. Но ресурс у них довольно большой, и в последние годы компания-производитель предлагает их на российском рынке для установки на мини-ТЭС, работающих на биотопливе, на производствах, где есть возможность и необходимость редуцирования пара с расходом от 2,5 т/ч и на установках для утилизации отходов (ТБО, ТКО и др.). Компания Spilling поставляет паропоршневой двигатель в сборе с электрогенератором как готовый к работе агрегат с системой управления, автоматизации и программным обеспечением. Такой двигатель может также работать на природном газе либо биогазе в качестве детандера. Стоимость 1 кВт установочной электрической мощности при расчетах можно принять от 1500 евро FCA. Основные технические данные паропоршневых двигателей Spilling: электрическая мощность 100-1200 кВт; частота вращения — 750, 900 и 1000 об/мин; давление пара на входе — 4-60 бар, на выхлопе — 0,2-15 бар; температура насыщения пара — до 480°С. Для многих двигателей Spilling в качестве топлива используют биомассу, в первую очередь древесную. Например, на одном из деревообрабатывающих предприятий в Африке установлен трехцилиндровый одноступенчатый паропоршневой двигатель Spilling электрической мощностью 437 кВт с давлением пара на входе 9 бар и на выхлопе 0,5 бар. Отходящий пар используется для обеспечения работы сушильной камеры. После ввода в эксплуатацию этого двигателя предприятие обеспечило себя дешевой электро- и тепловой энергией и, что особенно важно, обрело независимость от поставок электроэнергии из общей сети.
В числе других европейских производителей паропоршневых двигателей можно назвать чешскую компанию Tenza s. a., которая предлагает паровые двигатели мощностью от 10 до 120 кВт, и шведскую компанию Energiprojekt i Sverige AB, которая производит паровые двигатели мощностью от 500 до 1000 кВт с давлением пара на входе 30-60 бар и с заявленным КПД 25-30% (машины работают по термодинамическому циклу Ренкина с регенерацией и полезным использованием теплоты конденсации пара). Австрийская компания Foerdertechnik GmbH производит когенерационные паровые машины электрической мощностью 150 и 300 кВт и тепловой — 110 и 220 кВт соответственно, в топках паровых котлов которых можно сжигать биомассу, в частности щепу. Максимальная температура пара — 350°С, давление — 32 бар, паропроизводительность 200 кг/ч. Но стоимость этих машин, конечно, очень высокая — 280 тыс. и 480 тыс. евро. При такой стоимости эти «золотые» машины можно использовать только в некоторых европейских странах (Австрии, ФРГ и др.), где реализуются масштабные программы поддержки и субсидий ВИЭ и гарантируется оплата генерируемой электроэнергии по «зеленому» тарифу в течение продолжительного времени (до 20 лет). Поскольку в России о таких тепличных условиях можно только мечтать, то ориентироваться нужно в первую очередь на отечественных и азиатских (КНР, Тайвань, Вьетнам и др.) производителей и разработчиков оборудования. В мире производят сегодня и так называемые паровинтовые машины, которые в большей степени можно отнести к категории турбин, только ротор у этих машин не с лопатками, как у классических турбин, а в виде винта Архимеда — в основном цилиндрической или конусно-винтовой формы.
Первый отечественный паропоршневой мотор был спроектирован в Московском авиационном институте (МАИ) в 1936 году и предназначался для силовой установки экспериментального самолета. Двигатель работал на перегретом паре с давлением 6 МПа и температурой 380°С и на оборотах до 1800 об/мин.
В современной России нужно выделить научную группу «Промтеплоэнергетика» МАИ, которая предлагает довольно оригинальное решение вопроса экономически целесообразного применения паропоршневых машин в малой и децентрализованной энергетике России. Разработчики предлагают создавать паропоршневые двигатели на базе серийно выпускаемых дизельных поршневых двигателей. В конструкции ДВС сохраняется почти весь механизм газораспределения, который в ППУ становится механизмом парораспределения, также сохраняется кривошипно-шатунный механизм. Подобный подход обеспечивает низкую стоимость парового двигателя, в отличие от зарубежных аналогов, благодаря тому, что в производстве используются серийные автомобильные двигатели и запчасти к ним. Кстати, понятие «паропоршневые двигатели» впервые было введено в 2003 году именно научной группой «Промтеплоэнергетика» МАИ.
Где использовать паровые машины эффективно?
В качестве объектов, энергетическую эффективность которых можно повысить при использовании современных паровых машин, могут выступать:
- промышленные и муниципальные котельные с паровыми котлами (паровая машина для привода электрогенератора);
- паросиловые мини-теплоэлектроцентрали (мини-ТЭЦ), где паровую машину целесообразно устанавливать вместо маломощных паровых лопаточных и винтовых турбин, особенно если электрическая мощность последних до 1,2 МВт и они изготовлены в одноступенчатом варианте или же в многоступенчатом, но без промежуточного отбора пара;
- технологические производственные установки на предприятиях, где по условиям реализации основных процессов выпуска продукции есть возможность с помощью парового котла-утилизатора использовать сбросное тепло (например, в металлургии подобными установками могут выступать крупные сталеплавильные печи, а в стекольной промышленности — печи для варки стекла, на цементных, консервных и маслоэкстракционных, ликероводочных заводах и во многих других отраслях промышленности). Использование для этого технологии ORC (органического цикла Ренкина) — более дорогое решение, учитывая и то, что модули ORC в России не производятся.
Технологические решения для мини-ТЭС — конденсационных мини-электростанций (мини-КЭС) и мини-ТЭЦ — с использованием современных паровых машин принципиально схожи с известными, реализуемыми на паротурбинных мини-ТЭС. Это комбинированное производство электрической и тепловой энергии (когенерация на мини-ТЭЦ, в т. ч. создаваемых на базе котельных с паровыми котлами) либо так называемая тригенерация (см. рис. 1), т. е. выработка одновременно трех видов энергии (электрической, тепловой и холодильной). В качестве холодопроизводящего оборудования при тригенерации на паросиловых мини-ТЭС используются абсорбционные холодильные машины, для работы которых вполне достаточно отработавшего в паровом двигателе водяного пара. Такой вариант значительно экономичнее, чем выработка холода с помощью электрических кондиционеров.
В качестве заключения
Паропоршневые мини-ТЭЦ, работающие на биомассе, энергоэффективнее паротурбинных, газопоршневых (при работе на генераторном газе, полученном путем газификации биомассы) и дизельных. В паропоршневых мини-ТЭЦ удельный расход пара на выработку электроэнергии в 1,3-1,5 раза меньше, чем в паротурбинных мини-ТЭЦ, особенно при мощности 1200-1500 кВт. Современные паровые поршневые машины вполне могут использоваться в децентрализованной энергетике России. Применяя местные альтернативные виды топлива, в основном древесную биомассу, можно успешно заменить во многих регионах дизель-генераторы паровыми машинами (паропоршневыми установками) и дополнительно получать тепловую энергию, в результате отказаться от северных завозов угля и дизтоплива. Применение ППУ может способствовать энергосбережению при эксплуатации технологических и энергетических установок, в частности тех, у которых при работе выделяется сбросное тепло в виде выхлопных или дымовых газов.
Сергей ПЕРЕДЕРИЙ, Германия,
s.perederi@eko-pellethandel.de
В статье использованы некоторые материалы научной группы «Промтеплоэнергетика» МАИ и кафедры «Атомная и тепловая энергетика» Санкт-Петербургского политехнического университета им. Петра Великого
Railcraft/Промышленный паровой двигатель
Промышленный паровой двигатель — самый мощный двигатель в Railcraft.
Паровые двигатели недоступны в версиях Minecraft выше 1.12 для версии Railcraft 12.0.0 (и ниже)
Крафт [ ]
Использование [ ]
Двигатель вырабатывает энергию нужную для таких устройств мода, как дробитель и прокатный стан. Также его можно использовать для работы механизмов из мода BuildCraft.
Он включается и выключается, как и другие двигатели, сигналом красной пыли.
Для работы ему требуется подавать уже готовый пар. Поэтому пар нужно генерировать отдельно в паровом котле.
Мощность промышленного двигателя — 80 RF/t.
Для стабильной работы на максимальной мощности необходимо выделить на каждый промышленный двигатель 2 блока котлов высокого давления или 4 блока котлов низкого давления из общего количества блоков котла(блоки топки не считаются, так как пар не производят). Также для подачи достаточного количества пара необходимо подвести индивидуальную золотую водопроводящую трубу к каждому из промышленных двигателей (важно, чтобы трубы не пересекались, иначе их паропроводимость будет недостаточной для работы двигателя). Двигатель должен быть обязательно к чему-то подключён, иначе он может взорваться.
Интерфейс [ ]
Аналогичен интерфейсу коммерческого двигателя.
- 1 — Ёмкость для пара. Показывает текущее количество пара.
- 2 — Аккумулятор. Показывает накопленную внутреннюю энергию и мощность в RF/t.