Что такое механическая характеристика асинхронных двигателей
Что такое механическая характеристика асинхронных двигателей
Электротехника и радиоэлектроника
Пестрикова И.Е., Лопатина Л.Г., Панарина И.В.
Омский государственный технический университет, Россия
Механическая характеристика асинхронного двигателя
В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0,5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.
Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована русским инженером М.О. Доливо-Добровольским в 1889-1891 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1,5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.
За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.
Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания [1].
Для правильной эксплуатации асинхронного двигателя необходимо знать его характеристики. Одной из основных характеристик асинхронного двигателя, является механическая характеристика.
Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f ( M 2). Так как при нагрузке момент холостого хода мал, то M 2 ≈ M и механическая характеристика представляется зависимостью n = f ( M ). Если учесть взаимосвязь s = ( n 1 — n ) / n 1, то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).
Рис. 1. Механическая характеристика асинхронного двигателя
Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.
Пример расчета механической характеристики асинхронного двигателя. Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц. Параметры двигателя: P н =14 кВт, nH =960 об/мин, cos φн=0,85, η H =0,88, кратность максимального момента k м=1,8.
Определить: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критический момент, критическое скольжение и построить механическую характеристику двигателя.
Решение. Номинальная мощность, потребляемая из сети
P 1н = P н / ηн = 14 / 0,88 = 16 кВт.
Номинальный ток, потребляемый из сети
Число пар полюсов
p = 60 f / n 1 = 60 х 50 / 1000 = 3,
где n 1 = 1000 – синхронная частота вращения, ближайшая к номинальной частоте n н= 960 об/мин.
s н = ( n 1 — n н) / n 1 = (1000 — 960 ) / 1000 = 0,04
Номинальный момент на валу двигателя
Мк = k м х Мн = 1,8 х 139,3 = 250,7 Н·м.
Критическое скольжение находим подставив М = Мн, s = s н и Мк / Мн = k м.
Для построения механической характеристики двигателя с помощью n = ( n 1 — s ) определим характерные точки: точка холостого хода s = 0, n = 1000 об/мин, М = 0, точка номинального режима SH = 0,04, N H = 960 об/мин, Мн = 139,3 Н·м и точка критического режима Sk = 0,132, Nk = 868 об/мин, Мк =250,7 Н·м.
Для точки пускового режима Sп = 1, n = 0 находим
По полученным данным строят механическую характеристику двигателя. Для более точного построения механической характеристики следует увеличить число расчетных точек и для заданных скольжений определить моменты и частоту вращения [2].
Построенная по паспортным данным двигателя механическая характеристика называется естественной. Если изменять величину подведенного напряжения, активное сопротивление ротора или другие параметры, то можно получить механические характеристики, отличные от естественной, которые называют искусственными.
На рис. 2 приведены механические характеристики двигателя при разной величине подведенного напряжения.
Как следует из рис. 2 при понижении подведенного напряжения частота вращения магнитного поля n 0 остается неизменной, а уменьшается критический M кр и пусковой M пуск моменты, т.е. снижается перегрузочная способность и ухудшаются пусковые свойства двигателя. При понижении подведенного напряжения механическая характеристика становится мягче.
На рис. 3 приведены механические характеристики двигателя при разной величине активного сопротивления ротора.
Как следует из рис. 3 при увеличении активного сопротивления обмотки ротора за счет введения реостата R доб в цепь фазного ротора сохраняется неизменным M кр , т.е. сохраняется перегрузочная способность двигателя, но происходит увеличение пускового момента. Частота вращения в режиме идеального холостого хода остается неизменной, равной n 0 [3] . С увеличением активного сопротивления обмотки ротора механические характеристики становятся мягче, т.е. ухудшается устойчивость работы двигателя.
Классификация электроприводов по механическим характеристикам
В теории электропривода очень часто можно столкнуться с понятием механическая характеристика. Это графическое представление зависимости между скоростью и механическим моментом. У каждого привода есть своя механическая характеристика, позволяющая легко определить, какой момент сопротивления будет им развит при работе на определенной скорости.
В установившемся режиме, при постоянной скорости, момент двигателя и статический момент привода по модулю должны быть равны. Собственно, это следует из одного из законов Ньютона, известных нам еще со школьной скамьи. Скорость неизменна – значит равнодействующая сил (или моментов) должна быть равной нулю.
Из этого следует, что точка пересечения механических характеристик привода и двигателя соответствует установившемуся режиму работы. И если приводной двигатель подобран неудачно, то привод будет работать неэффективно, а то и вовсе не сможет запуститься.
Возможна работа с чрезмерно малой скоростью или с очень низкими энергетическими показателями. Возможно, что двигателю придется развить момент недопустимого значения, что в скором времени приведет к перегрузке по току и выходу привода из строя.
Поэтому так важен выбор механической характеристики двигателя под характеристику привода. А механические характеристики приводов поддаются некоторой классификации – у большинства механизмов есть некоторые общие принципы и закономерности в работе. Вот наиболее распространенные характеристики приводов:
Характеристика, свойственная приводам грузоподъемных механизмов. Момент сопротивления в таких приводах зависит только от массы поднимаемого или опускаемого груза. Направление же движения не оказывает никакого влияния на значение момента.
Электродвигателей, идеально подходящих под такую характеристику, не существует, поэтому в грузоподъемных приводах применяют асинхронные двигатели, реже – двигатели постоянного тока независимого или параллельного возбуждения.
Характеристика привода «сухого трения». Момент сопротивления в таком приводе меняет направление вместе с изменением направления движения. При этом по модулю момент сопротивления остается постоянным.
Примером такого привода можно считать любой реверсивный привод деревообрабатывающего или другого станка. Привод «сухого трения» имеет очень схожую с грузоподъемным приводом характеристику, поэтому двигатели в этих приводах применяются одни и те же.
Характеристика привода «вязкого трения». Это привод, момент сопротивления в котором находится в пропорциональной зависимости от скорости.
Реальный пример такого привода подобрать трудно, но физической его моделью является механизм, перемещающий твердое тело в жидкой вязкой среде при полном отсутствии помех со стороны гравитации. Двигателей, идеально соответствующих по характеристике такому приводу, тоже не существует.
Вентиляторная характеристика, свойственная не только приводам вентиляторов, но и насосов. Особенность ее заключается в том, что момент сопротивления привода находится в квадратичной зависимости от скорости.
Поэтому даже небольшое возрастание скорости работы привода ведет к существенному возрастанию нагрузки на двигатель. И эта характеристика не соответствует естественной характеристике электродвигателей какого-либо типа.
Транспортная характеристика, свойственная тяговым приводам электрического транспорта. Эта механическая характеристика отличается практически полным отсутствием статического момента на больших скоростях и очень большим моментом сопротивления на скоростях малых.
Характеристика принимает вид гиперболы, расположенной в первом и третьем квадранте. Похожую характеристику имеют двигатели постоянного тока смешанного и последовательного возбуждения – они обычно и применяются в таких приводах.
Позиционная характеристика, свойственная, например, приводу поворота большой радиолокационной антенны. Поскольку направление ветра в каждый момент времени постоянно, то ветер может способствовать или противодействовать повороту антенны. И зависеть это будет от ее текущего положения, то есть «позиции». Характеристика позиционного привода может иметь самую разную форму, которая, к тому же, может меняться с течением времени. Ведь ветер или другая сторонняя сила может всегда сменить направление.
Очевидно, что практически под любую из упомянутых выше механических характеристик привода, очень трудно подобрать двигатель с идеальной механической характеристикой.
Именно поэтому постоянно разрабатываются и совершенствуются системы управления электроприводами, позволяющие формировать для двигателя оптимальную механическую характеристику.
Онлайн журнал электрика
Статьи по электроремонту и электромонтажу
- Справочник электрика
- Бытовые электроприборы
- Библиотека электрика
- Инструмент электрика
- Квалификационные характеристики
- Книги электрика
- Полезные советы электрику
- Электричество для чайников
- Справочник электромонтажника
- КИП и А
- Полезная информация
- Полезные советы
- Пусконаладочные работы
- Основы электротехники
- Провода и кабели
- Программа профессионального обучения
- Ремонт в доме
- Экономия электроэнергии
- Учёт электроэнергии
- Электрика на производстве
- Ремонт электрооборудования
- Трансформаторы и электрические машины
- Уроки электротехники
- Электрические аппараты
- Эксплуатация электрооборудования
- Электромонтажные работы
- Электрические схемы
- Электрические измерения
- Электрическое освещение
- Электробезопасность
- Электроснабжение
- Электротехнические материалы
- Электротехнические устройства
- Электротехнологические установки
Механическая характеристика асинхронного двигателя
Механической чертой мотора именуется зависимость частоты вращения ротора от момента на валу n = f (M2) . Потому что при нагрузке момент холостого хода мал, то M2 ≈ M и механическая черта представляется зависимостью n = f (M) . Если учитывать связь s = (n1 — n) / n1 , то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).
Рис. 1. Механическая черта асинхронного мотора
Естественная механическая черта асинхронного мотора соответствует основной (паспортной) схеме его включения и номинальным характеристикам питающего напряжения. Искусственные свойства получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании мотора не номинальным напряжением свойства также отличаются от естественной механической свойства.
Механические свойства являются очень комфортным и полезным инвентарем при анализе статических и динамических режимов электропривода.
Пример расчета механической свойства асинхронного мотора
Трехфазный асинхронный движок с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц. Характеристики мотора: P н= 14 кВт, n н= 960 об/мин, cos φн = 0,85, ηн = 0,88, кратность наибольшего момента k м= 1,8.
Найти: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критичный момент, критичное скольжение и выстроить механическую характеристику мотора.
Решение. Номинальная мощность, потребляемая из сети
Механические и электромеханические характеристики асинхронного двигателя.
В настоящее время большое распространение получил электропривод переменного тока на базе простой по устройству и надежной в эксплуатации асинхронной машины.
Асинхронные двигатели получили большое распространение благодаря следующим своим качествам:
своей дешевизне двигателя,
достаточной высокой надежности,
относительно высокого КПД,
меньшего расхода цветных металлов на единицу мощности в 1,5-2 раза, чем для двигателя постоянного тока.
К недостаткам асинхронного двигателя следует отнести:
Квадратичная зависимость момента от напряжения, т.е. при падении напряжении в сети значительно уменьшится пусковой и максимальный момент.
;Хк=Х+Х’2.
Опасность перегрева статора особенно при повышенном напряжении,
Малый воздушный зазор, который несколько понижает надежность двигателя.
Наибольшее распространение среди асинхронных двигателей получил двигатель с короткозамкнутым ротором. Асинхронные двигатели с короткозамкнутым ротором применяются для механизмов с длительным режимом работы и не требующих регулирования скорости: в доменных цехах, используют для электропуска на электроприводе нагрузки кокса, для транспорта, в прокатных цехах, для тракторов и т.д.
Асинхронный двигатель с короткозамкнутым ротором применяют для тельферов, кран-балок, тихоходных мостовых кранов и пока широко применяют для электроприводов насосов малой мощности, транспортеров. В настоящее время наблюдается тенденция для использования двигателя с короткозамкнутым ротором в системах ПЧ-АД (преобразователя частоты в асинхронных двигателях).
Применение двигателя с фазным ротором оправдывается в следующих случаях:
Для мостовых кранов, нормальных и быстроходных, где требуется регулирование скорости на приводе моста, тележки и подъема груза.
Для маховичных приводов типа ножницы, прессы, главные приводы станков.
Для приводов, работающих с большой частотой включения, где асинхронный двигатель с короткозамкнутым ротором не проходит по нагреву или не дает требуемых динамических характеристик для торможения.
Ер=ЕрнS;;S– скольжение.
f2=f1—S;f1– частота сети,f2– частота ротора.
;р– число пар полюсов.
;n– обороты ротора.
w=w(1-S); n=n(1-S);
М=КФI2cos; — угол между ЭДС и током ротора.
Механические характеристики асинхронного двигателя.
Механической характеристикой двигателя называется зависимость скорости вращения двигателя или скольжения от вращающего его момента и наоборот.
М=f(s) s=(M)
M=f(w) w=(M)
Уравнение механической характеристики асинхронного двигателя можно получить использованием упрощенной схемы замещения асинхронного двигателя, которая имеет вид:
— суммарное активное сопротивление фазы ротора, приведенного к статору.
I1– ток статора;
I’2 – ток ротора;
I– ток холостого хода;
Х1– индуктивное сопротивление фазы обмотки статора;
Х’2– индуктивное сопротивление, приведенное к статору, индуктивное сопротивление обмотки ротора;
Х – индуктивное сопротивление намагничивающего контура;
R– активные потери в статоре;
R‘2– сопротивление обмотки фазы ротора приведенного к статору;
R2п– внешнее сопротивление, включенное в фазу ротора приведенного к статору.
Выражение для момента двигателя можно получить из уравнения баланса мощности асинхронного двигателя:
Р1z– электромагнитная мощность;
Рм– мощность на валу двигателя;
Р2эл– мощность электрических потерь.
Рм=Mw; Р12=Мw;
;
;
;
;
().
Кривая зависимости момента от скольжения имеет два максимума – один в генераторном режиме, другой в двигательном режиме или торможения противовключением.
Взяв производную от выражения () и приравняв к нулюdM/dS=0,находят критическое скольжениеSкр, при котором двигатель развивает максимальный момент:
;
.
Подставим значение критического скольжения в формулу электромагнитного момента (), получим выражение для критического или максимального момента:
Разделив выражение электромагнитного момента на выражения Мк,получим следующую формулу:
();
.
Для крупных машин в виду малости активного сопротивления обмотки статора (R1) коэффициент «а» можно принять равным нулю
а;R1=0
;
.
В электромашинах часто используют параметр (коэффициент перегрузочной способности)=Мкд/Мн.
Из номинального режима работы асинхронного двигателя подставим в формулу () Клосса значениеМ=Мн,S=Sни, принимая параметра=0, получим:
1. От wдо точки а – рабочий участок, определяется скольжениемS 0,350.4Sk,механическая характеристика линейная
;SSk;
2. Sкд– точка критического скольжения, изменяется в пределах 0,080,3.
Критический момент изменяется в пределах 1,63,4
3. Точка холостого хода М=0, скольжение равно нулю,w.
Точка б МскМн.
;
;
Точка критического скольжения в генераторном режиме при рекуперации энергии в сеть.
;МкгМкд.