1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое кратность пускового момента двигателя

Электродвигатель АИР 160 М4 (3-фазы) | 18,5 кВт 1500 об/мин

Модель асинхронного двигателя, который укомплектован в прочный корпус из силуминового сплава.

Ток 50Гц.

Основные данные про двигатель АИР 160 M 4 (АИР160 M 4) АИР 160 M 4:

Типология модели – Асинхронный двигатель
Вид двигателя – Трёхфазный общепромышленный
Высота оси вращения (габарит) — 160 мм
Мощность – 18,5 кВт
Синхронная частота оборотов вала — 1500 об/мин

Тип климатическое исполнение — У3, У2
Напряжение питающей сети — 380/660В
IP — 54 (55)

  • .text»>

Габаритные размеры:

Модель
эл.двигателя

Габаритные размеры

Установочные и присоединительные размеры

Применение

Модель АИР 160M4 – это электродвигатель трёхфазного исполнения, оснащённый короткозамкнутым ротором. Данное устройство применяется во всевозможных промышленных отраслях. Такой двигатель работает вместе заводскими машинами, а также в сфере заводских комплексов.

Комплектация общего механизма и монтажные функции исполнены по ГОСТ 2479-79.

Асинхронный двигатель АИР

Электродвигатель АИР 160 M4 представляет из себя высокооборотный механизм в асинхронном и трёхфазном исполнении. Модель работает на короткозамкнутом роторе, что позволяет совершать работу даже при резких перепадах числа полюсов в магнитном поле. В особых случаях вы можете поменять количество полюсов, если нужно отрегулировать скорость вращения двигателя.

Основные параметры электродвигателя АИР160M4 имеют стандартную синхронную частоту вращения в 1500 об/мин, когда число полюсов электродвигателя составляет 2р=2.

Допустимые варианты исполнения монтажа

  • на лапах
  • фланцевый +5%
  • комбинированный +5%

Корпус и устройство двигателя

Модель электродвигателя АИР 160M4 укомплектована в высокопрочный корпус из силуминового сплава, полакированный, с качественной медной обмоткой.

Номинальная мощность устройства 18,5 кВт.

Основные условные обозначения электродвигатель асинхронный АИР 160M4

А – асинхронный двигатель

И – разработка по лицензии Интерэлектро (организация СЭВ, разработавшая серию двигателей и действующая в рамках международного сообщества)

Р – привязка к мощности согласованных размеров согласно стандарту РС3031-71 (страны СНГ)

80 – габарит двигателя (высота оси вращения, в мм)

А – короткая (первая) длины сердечника статора, когда идёт сохранение установленного размера

Вращающий момент, развиваемый на валу асинхронного электродвигателя в условиях нулевой скорости вращения ротора (когда ротор еще неподвижен) и установившегося в обмотках статора тока, — называется пусковым моментом асинхронного двигателя.

Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.

Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.

Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.

Давайте рассмотрим еще одну формулу для нахождения пускового момента. Она будет вам полезной для теоретических расчетов. Здесь достаточно знать мощность на валу в киловаттах и номинальные обороты, — все эти данные указаны на табличке (на шильдике). P2-номинальная мощность, F1-номинальные обороты. Итак, вот эта формула:

Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.

Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:

Тип двигателяНоминальный момент, НмОтношение пускового момента к номинальному моментуПусковой момент, Нм
АИРМ132М2362,590
АИР180 S2722144
АИР180М2972,4232,8

Роль пускового момента асинхронного электродвигателя (пусковой ток)

Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.

Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.

Маломощные двигатели (до 3 кВт) легко переносят данные броски, и сеть так же легко выдерживает эти незначительные кратковременные всплески мощности, ибо у сети всегда есть некоторый мощностный резерв. Вот почему небольшие насосы и вентиляторы, станки и бытовые электроприборы обычно включают напрямую, не заботясь особо о токовых перегрузках. Как правило обмотки статоров двигателей оборудования такого рода соединяются по схеме «звезда» из расчета на трехфазное напряжение 380 вольт или «треугольник» — для 220 вольт.

Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».

Читать еще:  Что обозначает модель двигателя

Пути ограничения пускового тока

Наиболее простой способ ограничения пускового тока — пуск при пониженном напряжении. Обмотки просто переключаются с треугольника на звезду в момент пуска, а затем, когда двигатель набрал какие-то обороты — обратно на треугольник. Переключение осуществляется через несколько секунд после старта с помощью реле времени, например.

В таком решении пусковой момент также понижается, причем зависимость квадратичная: при снижении напряжения в будет в 1,72 раза, момент снизится в 3 раза. По этой причине пуск при пониженном напряжении подходит для такого оборудования, где пуск возможен с минимальной нагрузкой на валу асинхронного двигателя (например пуск многопильного станка).

Мощным нагрузкам, например ленточному конвейеру, необходим другой способ ограничения пускового тока. Здесь лучше подойдет реостатный метод, позволяющий снизить пусковой ток без уменьшения крутящего момента.

Такой способ очень подходит асинхронным двигателям с фазным ротором, где реостат удобно включается в цепь обмотки ротора, и регулировка рабочего тока осуществляется ступенчато, получается очень плавный пуск. С помощью реостата тут же можно регулировать и рабочую скорость двигателя (не только в момент запуска).

Но наиболее эффективным способом безопасного пуска асинхронных двигателей является все же пуск посредством . Величину напряжения и частоту регулирует сам преобразователь автоматически, создавая оптимальные условия двигателю. Обороты получаются стабильными, при этом броски тока принципиально исключены.

Для каждого асинхронного двигателя может быть определен номинальный режим, т. е. режим длительной работы, при котором двигатель не перегревается сверх установленной температуры. Момент М ном, соответствующий номинальному режиму, называется. номинальным моментом. Соответствующее ему номинальное скольжение составляет для асинхронных двигателей средней мощности s H0M = 0,02. 0,06, т.е. номинальная скорость n иом находится в пределах

n ном = n 0 (1 — s 0)= (0,94. 0,98) п 0 .

Отношение максимального момента к номинальному к м = = Mmах/M ном называется перегрузочной способностью асинхронного двигателя. Обычно к т = 1,8.. .2,5.

При пуске в ход, т. е. при трогании с места и при разгоне, асинхронный двигатель находится в условиях, существенно отличающихся от условий нормальной работы. Момент, развиваемый двигателем, должен превышать момент сопротивления нагрузки, иначе двигатель не сможет разгоняться. Таким образом, с точки зрения пуска двигателя важную роль играет его пусковой момент.

Отношение пускового момента М п развиваемого двигателем в неподвижном состоянии, т. е. при n = 0, к номинальному моменту k п = М п /М ном называется кратностью пускового момента.

Максимальный момент М тах называется критическим моментом асинхронной машины. Работа машины с моментом, превышающим номинальный, возможна лишь кратковременно, в противном случае срок службы машины сокращается из-за ее перегрева.

В результате взаимодействия вращающегося магнитного потока с токами, индуктированными им в проводниках роторной обмотки, возникают силы, действующие на эти проводники в тангенциальном направлении. Найдем значение момента, создаваемого этими силами на валу машины.

Электромагнитная мощность, передаваемая ротору вращающимся магнитным полем, ровна:

где М эм — электромагнитный момент действующий на ротор.

В соответствии со схемой замещения одной фазы машины:

Из этих выражений найдем:

Учитывая действующий ток ротора, ЭДС, индуктивное сопротивление получим:

Введем постоянную и пренебрегая моментом трения, представим выражение момента на валу в виде:

Если магнитный поток Ф выражен в веберах, ток I 2 — в амперах, то вращающий момент получится в ньютон-метрах (Нм).

Вращающий момент машины зависит от изменяющихся при нагрузке ф, I 2 и, но его можно представить в виде функции однойпеременной. В качестве такой переменной для асинхронного двигателя наиболее удобно выбрать скольжениеs.

Полагая, что частота сети неизменна введем

Получим следующее выражение для вращающего момента:

42. Энергетическая диаграмма АД. В электрической машине часть энергии теряется в виде тепла в различных частях — потери в обмотках, в стали, механические потери.

На диаграмме: Р 1 — мощность, подводимая из сети. Основная часть её за вычетом потерь в статоре, передаётся электромагнитным путём на ротор через зазор; Р эм называется электромагнитной мощностью.

Потери в статоре складываются из потерь в обмотке и в стали:

Рис. 42. Энергетическая диаграмма АД.

р с1 и р с2 . р с1 теряется на вихревые токи и перемагничивание сердечника. Потери в стали имеются и в сердечнике ротора, но они невелики и их можно не учитывать, т.к. n 0 во много раз больше скорости магнитного потока относительно ротора n 0 — n , если n соответствует устойчивой части естественной механической характеристики.

Механическая мощность, развиваемая на валу ротора, меньше Р эм на значение р об2 потерь в обмотке ротораР мх = Р эм — р об2 Мощность на валу Р 2 = Р мх — р мх, где р мх — мощность механических потерь, равная сумме потерь на трение в подшипниках, на трение о воздух и трение щеток о кольца.

Электромагнитная и механическая Р равныР эм = ω 0 М, Р мх = ωМ , где ω 0 и ω — скорости синхронная и ротора, М — момент, развиваемый двигателей, т.е. момент, с которым вращающееся поле действует на ротор.

Добавочные потери обусловлены зубчатостью ротора и статора, вихревыми токами в различных узлах и другими причинами. При полной нагрузке потери Рд принимаются равными 0,5% его номинальной мощности.

К.п.д. двигателя: h = P 2 /P 1 = / Р 1 .

Т.к. общие потери зависят от нагрузки, то и КПД является функцией нагрузки. Машина конструируется так, чтобы максимум ее коэффициента полезного действия h имел место при нагрузке, несколько меньше номинальной. Для большинства двигателей к.п.д. равен 80-90%, а для мощных двигателей 90-96%.

Читать еще:  Crossout какой двигатель лучше

43. Устройство синхронного двигателя. Схема замещения, уравнения энергетического состояния фазы обмотки статора, векторная диаграмма синхронного дв. Основными частями статора являются неподвижный пакет маг­нитопровода и трехфазная обмотка. Пакет магнитопрово­да изготовлен в виде полого цилиндра, набранного, так же как и магнитопровод трансформатора, из тонких листов электротехнической стали. Листы имеют форму колец с пазами, симметрично расположенными вдоль внутренней окружности. В пазы пакета статора уложены стороны многовитковых мягких катушек, образующих три фазы обмотки. Пакет статора с обмоткой запрессован в алюминие­вый или чугунный корпус-оболочку, неподвижно закрепляемый при установке машины на фундаментной плите. С корпусом прочно соеди­нены два боковых литых щита со сквозными центральными отверстия­ми для подшипников, в которых вращается вал ротора.

Начала и концы фаз обмотки статора присоединены к зажимам, расположенным в коробке выводов, укрепленной на корпусе. Боль­шинство машин имеет коробку выводов с шестью зажимами, что по­зволяет соединять фазы обмотки треугольником или звездой.

Применяются два типа роторов синхронных машин — неявнопо-люсный, или с неявно выраженными полюсами, и ротор явнополюс-ный, или с явно выраженными полюсами. В первом случае сердечник ротора представляет массивное цилиндрическое тело из стали (бочка ротора), вдоль его поверхности выфрезерованы пазы, в которых заклады­вается обмотка возбуждения. Пазы и обмотка возбуждения размещают­ся так, чтобы получить по возможности синусоидальное распределение индукции в зазоре между сердечниками ротора и статора. Общий вид неявнополюсного ро­тора показан на рис.

Явнополюсный ротор состоит из мас­сивного стального колеса, посаженного на вал. К его ободу по внешней поверхности крепятся стальные сердечники полюсов. Последние, а иногда и обод выполняются из листовой стали. Для малых машин и при не слишком большом числе полюсов вместо колеса на вал насаживается стальная втулка, к которой крепятся полюса. Обмотка возбуждения в виде катушек разме­щается на сердечниках полюсов. Такая конструкция ротора позво­ляет разместить на нем большое число полюсов, что необходимо для машин с небольшой скоростью вращения.

44. Регулирование реактивной мощности синхронного двигателя осуществляется изменением тока возбуждения Iв

Что такое пусковой момент асинхронного двигателя, как его рассчитать и увеличить

Переход двигателя из покоя в рабочее состояние называют пусковым моментом асинхронного электродвигателя. При этом подразумевается, что на обмотки двигателя подано номинальное напряжение стандартной частоты. Этот временной промежуток называют «моментом трогания», «начальным моментом» или «начальный пусковой момент асинхронного двигателя». При этом электродвигатель потребляет максимальное количество электроэнергии. Она расходуется на преодоление тормозного момента вала, потерь в двигателе для придания вращательного момента механизмам. В этой статье мы расскажем читателям сайта Сам Электрик, как рассчитывается пусковой момент электродвигателя и как его можно увеличить.

  • Расчет пускового момента
  • Методы увеличения Мпуск
  • Схемы включения асинхронного двигателя
  • Способы снижения пусковых токов АД

Расчет пускового момента

Пусковой момент, который зависит от номинального усилия на валу и кратности пускового момента, можно вычислить по формуле:

  • Мн — номинальное усилие на валу электродвигателя;
  • Кпуск.— кратность пусков, паспортная величина, которая принимает значения от 1,5 до 6.

На практике применяют другую формулу:

Необходимые данные указываются на шильдике двигателя или в паспорте, где F1 — номинальные обороты.

Р2 равна номинальной мощности в кВт, является расчетной величиной.

Для того, чтобы узнать значение Р2, следует воспользоваться формулой, в которой учитываются пусковой ток, напряжение сети, скольжение. Эти данные можно узнать в паспорте, справочнике или на сайте завода-изготовителя.

Методы увеличения Мпуск

Из формулы видно, от чего зависит пусковой момент асинхронного двигателя и как увеличить его, изменяя параметры. Он зависит от мощности трехфазного двигателя и величины скольжения.

Мощность определяется по формуле, корень из 3 умноженный на напряжение и ток. Скольжение изменяет свое значение в зависимости от оборотов вала механизма. При оборотах двигателя равных нулю, скольжение принимает значение равное 1.

При разгоне электродвигателя оно уменьшается и стремится к нулю при достижении номинальных оборотов ротора. Для того чтобы увеличить пусковой момент, достаточно увеличить пусковой ток или питающее напряжение. Величину скольжения изменить нельзя.

Для примера приведем расчет пускового момента, используя паспортные данные некоторых двигателей. Результат сведен в нижеприведенную таблицу:

При этом следует помнить, что использование электродвигателя в механизмах с пусковым моментом, превышающим усилие двигателя на валу – недопустимо. В этом случае электродвигатель не сможет преодолеть потери в двигателе и тормозной момент механизма. Он просто выйдет из строя. Т.е. усилие электродвигателя недостаточно для нормальной работы устройства.

Схемы включения асинхронного двигателя

Для уменьшения воздействия пусковых токов применяются различные схемы включения. Это зависит от механизма и мощности электродвигателя.

Типовое включение двигателя осуществляется напрямую. Напряжение на обмотки подается через магнитный пускатель.

Во время пуска в сети возникает бросок тока, который превышает номинальный в 5-7 раз. Длительность зависит от мощности электродвигателя и нагрузки на валу. Чем мощнее устройство, тем длительнее период разгона.

В результате возникает понижение напряжения в сети, что отрицательно сказывается на аппаратуре, подключенной к этой цепи. Маломощные не оказывают существенного влияния на сети.

На графике снизу представлена зависимость тока от времени разгона электродвигателя:

Читать еще:  Характеристики двигателя nissan teana

При запуске мощного электропривода 10 и более кВт следует ограничивать пусковой ток. Это необходимо, чтобы сети не испытывали значительные перегрузки, в результате, которой происходит понижение напряжения сети, что приводит к нештатной ситуации.

Для этого применяются схемы переключения с треугольника на звезду, используются токоограничивающие устройства или частотные преобразователи.

Способы снижения пусковых токов АД

Уменьшить пусковые токи асинхронного двигателя можно несколькими способами. Перечислим их по порядку.

Наиболее распространенным методом, является запуск двигателя при пониженном напряжении. Для чего коммутируют обмотки асинхронного двигателя. В начальный момент пуска, обмотки переключают с треугольника на звезду. После набора оборотов коммутацию возвращают в первоначальное положение. При этом следует учитывать, что пусковой момент при таком запуске уменьшается. Например, при снижении напряжения в 1,72 (корень квадратный из 3) раза, момент уменьшится в три раза. Такой метод применяется при запуске механизмов с минимальной нагрузкой на валу, где установлены асинхронные электродвигатели с короткозамкнутым ротором.

Так же ограничение токов во время запуска двигателя осуществляют включением последовательно с обмотками статора индукционных сопротивлений. В некоторых случаях для этих целей используются резисторы. После выхода двигателя на оптимальные режимы, резисторы шунтируются.

На рисунке снизу показаны варианты запуска при пониженном напряжении:

Пуск при пониженном напряжении

При уменьшении нагрузки на валу можно регулировать пусковые токи. В первоначальный промежуток времени подключается часть нагрузки. После достижения оптимальных оборотов, подается полная нагрузка.

Для мощных устройств применяют реостатный запуск. Такой пуск используют для приводов укомплектованных асинхронными электродвигателями с фазным ротором. Регулировка производится ступенчато, т.е. резисторы отключаются постепенно с набором скорости вращения. Таким образом обеспечивается плавный пуск.

На рисунке снизу представлена принципиальная схема запуска:

График токов при прямом и плавном пуске электропривода:

Наиболее щадящий запуск механизмов обеспечивает пуск с помощью частотного преобразователя. В этом случае частотный преобразователь самостоятельно выбирает оптимальные режимы. При этом можно увеличить пусковой момент, не повышая нагрузку на сети. Использование частотного преобразователя полностью исключаются нежелательные броски тока в сети.

Вот и были рассмотрены способы увеличения пускового момента асинхронного двигателя, а также правильный его расчет. Если остались вопросы, задавайте их в комментариях под статьей!

Вращающий момент двигателя

Вращающий момент любого электродвигателя переменного тока определяется его потоком Φ и активной слагающей тока:

На рис. 10-17 приведена схема включения короткозамкнутого асинхронного двигателя. При включении рубильника ток ротора I 2 П будет вначале максимален, так как э. д. с. неподвижного ротора наибольшая.

Однако пусковой вращающий момент оказывается в 2—2,5 раза меньше максимального. Причина этого в том, что при пуске x 2 (8 10) r 2 и угол φ 2 между E 2 и I 2 П близок к 90°. Вследствие этого активная слагающая тока I 2 П cos φ 2 очень мала (рис. 10-18). В современных асинхронных двигателях кратность пускового момента М П / М Н = 1 1,5 при кратности пускового тока I 2 П / I 4,6 6,5.
В процессе пуска двигателя по мере увеличения скорости n 2 уменьшаются скольжение s и
э. д. с. E 2 S , что вызывает уменьшение тока ротора I 2, но так как индуктивное сопротивление ротора x 2 S тоже уменьшается, то при неизменном r 2 угол сдвига φ 2 уменьшается, а активная слагающая I 2 cos φ 2 растет. Значит, растет и момент М . Так продолжается до тех пор, пока x 2 S не станет равным r 2.

Прямоугольный треугольник падений напряжения становится равнобедренным ( I 2 x 2= I 2 r 2)
(рис. 10-18) и активная слагающая тока I 2 cos φ 2 наибольшей, а следовательно, максимальным и вращающий момент ( М = М Н ). При дальнейшем увеличении частоты n 2 сопротивление x 2 S становится меньше r 2 и последнее на величину тока оказывает большее влияние, так что при дальнейшем уменьшении E 2 S происходит уже уменьшение I 2 cos φ 2, а значит, и момента М . Отношение М М / М Н обычно равно 1,8—2,5 и называется способностью двигателя к перегрузке.

Как видим, электромагнитный вращающий момент является функцией скольжения М = f (s) при U 1 = const (рис. 10-19). Номинальный момент М Н двигатель развивает при номинальном скольжении

Наибольший (максимальный) момент М М двигатель развивает при скольжении, называемом критическим ( s Kp 0,2). При скольжении s = 1 двигатель развивает пусковой вращающий момент М П.
Известно, что магнитный поток Φ приближенно пропорционален напряжению U 1 , а
М Φ I
2 cos φ 2, и так как I 2 cos φ 2 E 2 S Φ U 1 то

Таким образом, вращающий момент асинхронного двигателя при данном скольжении пропорционален квадрату подведенного к статору напряжения. Эта зависимость имеет большое значение для эксплуатации асинхронных двигателей, так как падение напряжения в сети, например до 0,8 U , вызовет уменьшение максимального момента до 0,8 2 М М = 0,64 М М и двигатель не сможет преодолеть даже незначительной перегрузки, т. е. остановится.
Зависимость n 2 = f ( М ) при U 1 = const и f 1 = const называется механической характеристикой (рис. 10-20). Эта характеристика построена в осях ( n 2/ n 1) •100% и
( М / М Н) •100%. Рабочая ее часть в пределах от 0 до М Н показана сплошной линией.
Кривая 1, полученная при замкнутом накоротко роторе, называется естественной характеристикой. Эта характеристика такая же жесткая, как у двигателя постоянного тока параллельного возбуждения .
Кривая 2 называется искусственной характеристикой. Эта характеристика более мягкая, чем первая, и получается при включении добавочного сопротивления в цепь ротора с фазной обмоткой, что можно использовать для регулирования частоты вращения двигателя (крановые и подъемные устройства).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector