Что такое кпд двигателя автомобиля - Авто журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое кпд двигателя автомобиля

КПД двигателя автомобиля.

Тепловая эффективность двигателя. Не такая страшная физика.

Обычно, если кто-то слышит слоган «тепловая эффективность двигателя», они сразу же меняют тему. Вы можете говорить о двигателях об их мощности, об их расходе топлива или — вызывая уважение собеседников как эксперта — о рабочих системах, таких как Дизель, Отто, Ванкель и Аткинсон. Но термическая эффективность звучит как домашняя работа по физике, то есть вызывает отвращение и негативные реакции. Между тем все это сливается в одно .

КПД двигателя — обозначается латинским символом η (eta) — это параметр, который характеризует данный двигатель и означает, сколько подаваемого тепла преобразуется в полезную работу. В случае двигателя внутреннего сгорания это преобразование тепловой энергии, возникающей в результате сгорания топлива, в механическую энергию, выделяемую двигателем в результате вращения коленчатого вала.

Значения этой эффективности различны для разных типов двигателей и, например, для двигателей с искровым зажиганием составляют около 0,30–0,36, а для дизельных двигателей — около 0,40–0,45. Это означает не что иное, как то, что при заливке в бак 50 литров топлива только 15-18 литров бензина и 20-22,5 литра дизельного топлива используются для привода компонентов автомобиля. Остальное безвозвратно потеряно.

От чего зависит тепловая эффективность?

Вообще говоря, это «использование тепловой энергии» возникает из-за разницы между температурой воспламенения смеси и температурой выхлопного газа, выходящего из цилиндра. Чем больше разница, тем больше тепла превращается в работу.

Здесь, к сожалению, мы должны помнить несколько принципов в физике / механике. Поршень, двигаясь к головке, сжимает топливовоздушную смесь (бензиновые версии) или воздух (дизель), и после воспламенения / взрыва отработавший газ расширяется точно по тому же пути, что и ранее сжатая топливно-воздушная смесь, или — в дизеле — сжатый воздух. Это означает, что чем больше сжатая среда, тем больше она расширяется после взрыва, и чем больше она расширяется, тем больше будет работать поршень, а выхлопные газы будут охлаждаться.

В качестве примера, стоит упомянуть, что температура сгорания топлива в двигателях внутреннего сгорания превышает 2000 градусов по Цельсию, температура выхлопных газов в бензиновых двигателях (где степень сжатия обычно составляет около 9-11: 1) составляет около 550 — 700 градусов по Цельсию, а в случае версии Дизель (где степень сжатия составляет более 20: 1) температура выхлопных газов составляет около 400 С.

Следовательно, следует отметить, что для того, чтобы отметить более высокий тепловой КПД в бензиновом двигателе, степень сжатия должна быть увеличена. Тем не менее, проблема заключается в том, что возникает стук, потому что в какой-то момент сжатия температура повышается настолько, что даже до воспламенения — вызванного искрой от свечи — топливо может взорваться, что приводит к нарушению плавности работы двигателя и его неравномерной работе.

Стук также может привести к повреждению двигателя. Оболочки на головке шатуна, а также подшипники коленчатого вала особенно подвержены взрывам топлива. В меньшей степени такое сгорание отрицательно сказывается на клапанах, поршнях или шатунах. Сам феномен детонации зависит от конструкции двигателя и химического состава топлива.

Следовательно, увеличение октанового числа выше 100 (я напоминаю топливо на станциях 95 или 98) может нейтрализовать неблагоприятный стук. Теоретически это возможно, потому что такой бензин в настоящее время включает в Бразилии (добавление этанола) и авиационные двигатели также нуждались в более высоком октановом значении.

Однако в ведущих исследовательских лабораториях также начались исследования по модернизации существующих конструкций двигателей с использованием всех известных технических инноваций. Эффект этих работ, среди прочего Бензиновый двигатель SKYACTIV-G от исследовательских лабораторий Mazda.

Этот бензиновый двигатель с непосредственным впрыском топлива использует полный спектр совершенно новых технических решений. Благодаря этому он чрезвычайно прочен и в то же время чрезвычайно эффективен благодаря использованию беспрецедентной степени сжатия. Удалось преодолеть все трудности, которые ранее этому мешали.

Основные характеристики этого двигателя:

очень высокая степень сжатия 14,0: 1, которая была достигнута благодаря специальной системе выпуска, поршневым полостям, новым многоотверстным инжекторам и другим нововведениям для предотвращения неправильного сгорания (детонации);

  • внутреннее трение уменьшено на 30%;
  • регулировка фаз газораспределения во впускных и выпускных клапанах;
  • легкая конструкция — общий вес на 10% ниже.

В результате этих деталей были получены четырехцилиндровые безнаддувные двигатели с большим рабочим объемом с высоким крутящим моментом (примерно на 15% выше в диапазоне низких и средних оборотов двигателя по сравнению с традиционными версиями), а расход топлива и выбросы CO2 снижены примерно на 15 % по сравнению с бензиновым двигателем аналогичной мощности. Поэтому это альтернатива широко распространенной в настоящее время минимизации двигателя.

Самое главное, что в двигателях SKYACTIV-G у нас нет неблагоприятных вибраций двигателя в диапазоне низких оборотов, нет неблагоприятного увеличения скорости, и мы имеем гораздо более высокую рабочую культуру, чем малые трехцилиндровые соревновательные агрегаты, имеющие аналогичную мощность. Это представлено в таблице, сравнивающей Mazda 2 и Mazda 3 с двигателем SKYACTIV-G и Peugeot с 1,2-цилиндровым двигателем Pure Tech и VW с двигателями 1,0 TSi.

Дизайнеры Toyota пошли несколько другим путем, чтобы повысить тепловой КПД, и они взяли идею английского изобретателя Джеймса Аткинсона. В 1882 году он сконструировал двигатель, в котором благодаря сложной системе толкателей, соединяющих поршни с коленчатым валом, рабочий ход был длиннее такта сжатия. Благодаря этому, после длительного рабочего цикла, когда начался рабочий ход, давление и температура выхлопных газов были намного ниже, а энергия от расширения использовалась полностью.

Читать еще:  Что сделать после перегрева двигателя

Вместо разработки сложных систем толкателя, которые продлили бы рабочий ход, вместо этого использовались «электроника и достижения 21-го века». Благодаря продуманному решению удалось сделать так, что, несмотря на то, что двигатель Toyota поддерживает классическую простую конструкцию обычных четырехтактных двигателей, где при каждом из тактов поршень движется одинаково, эффективный рабочий ход длиннее такта сжатия.

Как говорят конструкторы Toyota, следует сказать иначе: эффективный ход сжатия короче рабочего хода (т. Е. В точности идея двигателя Джеймса Аткинсона). Это достигается путем задержки закрытия всасывающего клапана, который закрывается сразу после начала такта сжатия. Таким образом, часть топливовоздушной смеси возвращается во впускной коллектор. Это имеет два следствия: количество дымовых газов, образующихся в результате его сгорания, меньше и может полностью расширяться перед началом такта выпуска, передавая всю энергию на поршень, а сжатие меньшего количества смеси требует меньше энергии, что снижает внутренние потери двигателя.

Единственная проблема с двигателем, работающим по системе Аткинсона, заключается в том, что мощность двигателя меньше, чем у традиционной машины. Хотя эта концепция оказалась отличным решением для гибридных автомобилей, в которых нехватка мощности, особенно необходимая для запуска и ускорения, компенсирует электродвигатель по сравнению с классическим двигателем Отто, двигатель Аткинсона явно проигрывает.

Здесь, однако, гений инженера Toyota / Lexus вновь проявил себя. Технические инновации и использование электронного управления открытием клапана позволили использовать обе рабочие системы и создать двигатель с переменной нагрузкой. Когда энергопотребление низкое, например, при спокойной езде по дороге, двигатель работает в цикле Аткинсона, потребляя мало топлива. Однако, когда требуется лучшая производительность — при выключении света или обгоне — он входит в цикл Отто, используя всю доступную динамику. Такой 1,2-литровый двигатель с непосредственным впрыском топлива и турбонаддувом, например, Toyota Auris и городской внедорожник Toyota C-HR. Аналогичный рабочий двухлитровый агрегат используется в Lexus: IS 300, GS 300, NX 300,

Таким образом, тепловая эффективность является основным фактором, влияющим на потребление топлива и использование тепловой энергии, образующейся при сгорании топлива. Важно, что продолжается работа по повышению этой эффективности, то есть по разработке более совершенных двигателей.

Новейшим решением является двигатель INFINITI VC-Turbo (Variable Compression Turbo), который является одним из самых технически совершенных двигателей внутреннего сгорания, когда-либо созданных, и используемая в нем технология VC-Turbo сочетает в себе мощность высокоэффективного 2,0-турбочного бензинового двигателя с крутящим моментом и экономичностью. современный дизельный двигатель, но без выхлопных газов.

Технология Infiniti VC-Turbo имеет возможность непрерывного преобразования, поскольку она использует усовершенствованную многорычажную систему для бесконечного увеличения или уменьшения размера камеры сгорания и сразу же — на основании обнаруженной нагрузки двигателя и команд водителя — выбирает наиболее подходящую степень сжатия. Двигатель способен реализовать любую степень сжатия от 8: 1 до 14: 1.

Развивая максимальную мощность 272 л.с. и 390 Нм крутящего момента, двигатель VC-Turbo сопоставим по производительности с шестицилиндровыми бензиновыми двигателями и определенно более экономичен, чем он.

Будущее?

Мы должны помнить, что разработка новых двигателей не так проста, как создание новых корпусов или компонентов, потому что в этом случае лабораторные испытания имеют колоссальное значение, но можно предположить, что двигатели через дюжину или около того лет будут иметь более высокий тепловой КПД.

Если, только электродвигатели не завоюют рынок, что двигатель внутреннего сгорания отправится в музей, и исследования новых решений перестанут быть экономически жизнеспособными .

Какой КПД у двигателя автомобиля

Наверняка, многие автолюбители задавались вопросом о том, насколько мощность двигателя внутреннего сгорания соответствует полезности. Предполагается, что чем у силовой системы показатель КПД выше, тем она эффективнее. Если говорить абсолютными категориями, то на сегодняшний день самый высокий коэффициент у электрических двигателей, в некоторых моделях он достигает порядка 95 процентов. Что же до двигателей внутреннего сгорания, то у большинства из них, вне зависимости от типа топлива этот показатель весьма далёк от идеальных цифр.

КПД двигателя внутреннего сгорания

Конечно, современные двигатели гораздо эффективнее тех, что были разработаны и выпущены лет десять назад, обусловлено это объективными причинами развития технологий. В начале нулевых мотор объёмом в полтора литра выдавал в среднем около семидесяти лошадиных сил, и это было нормальным. Сегодня количество голов в табуне такого же объёма может достигать более 150. Каждый шажочек в плане увеличения КРД двигателя даётся производителям кропотливым трудом и перебором проб, ошибок и удач.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

  • Для начала следует разобрать топливную эффективность. Все мы в курсе, что топливо сгорает не полностью, и некоторая его часть просто выходит в виде отработанных газов и вместе с ними. А это уже потеря примерно четверти эффективности, то есть – минус 25%. Даже инжектор и другие современные системы не решают этого вопроса, хоть и стали очень эффективными.
  • Далее идут тепловые потери. Мотор греет себя, воздух, другие элементы и узлы, к примеру, радиатор, охлаждающую жидкость, свой корпус, а также выхлоп. В этом месте эффективность теряет ещё около 35%.
  • Немало процентов забирают механические потери. Это поршни, шестерни, кольца, подшипники и прочие элементы и узлы, где присутствует трение. Сюда же относим и нагрузки генератора, который при выработке электроэнергии заметно тормозит коленвал. Несмотря на то, что смазочные материалы стали гораздо эффективнее, вынь да положь ещё двадцать процентов потерь.
Читать еще:  Двигатель 606 турбо характеристики

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Лучшие двигатели внутреннего сгорания эффективны на 25%

Дизель или бензин

А что в этом плане показывают дизельные агрегаты, и эффективнее ли они бензиновых собратьев? Если не лезть в самые гущи технических джунглей, то коротко можно констатировать, что в плане КПД дизельные двигатели будут эффективнее бензиновых. Если бензиновый агрегат преобразовывает всего 25 % топливной энергии в энергию механическую, то показатели дизельных моторов достигают 40%. А если дизель оснастить качественной турбиной, то КПД может достигать и пятидесяти процентов.

Подошла ли эволюция двигателей внутреннего сгорания к своему пику? Возможно. Поэтому сейчас всё больше автопроизводителей обращают внимание на электрическую тягу. Осталось лишь разработать эффективные батареи , не боящиеся мороза, и долго держащие заряд.

Двигатель

Статьи в разделе:

    Как работает система старт-стоп — функция, устройство, виды реализации

Назначение и принцип работы системы старт-стоп. Рассмотрено несколько видов реализации (варианты «Start&Stop Bosch», «Idle Stop&Go Kia», «STARS Valeo», «SISS Mazda», «CleanStart»), а также интеллектуальная система старт-стоп с рекуперацией.

Повышение индикаторного КПД двигателя внутреннего сгорания:

Использование теплоты, отводимой в систему охлаждения, и энергии отработавших газов:

Большая часть тепловой энергии отводится от двигателя в систему охлаждения и уносится с отработавшими газами, проблема заключается в том, как минимизировать потери этой энергии или использовать её.

Адиабатный двигатель – трудности создания, пути реализации, пример конструкции.

Наддув, нагнетатели и немного истории

Большая статья о наддуве и турбонаддуве двигателя, о принципе действия и конструкции различных нагнетателей.

Тепловые машины на основе сплавов с памятью формы позволят получить дополнительную мощность для автомобилей, станков и бытовой техники.

Повышение механического КПД двигателя внутреннего сгорания:

Двигатели нетрадиционных типов и схем:

Каждый из типов двигателей имеет свои достоинства и недостатки: один двигатель ценится за достаточно хорошую систему охлаждения, другой — за ее отсутствие вовсе и т. д.

Пластиковый двигатель внутреннего сгорания

Создание двигателя внутреннего сгорания с использованием пластмасс позволит уменьшить общую массу автомобиля, сократив тем самым расход топлива.

Компаундный двигатель

Компаундный двигатель – это тепловой двигатель, где расширение рабочего тела происходит многократно. Данный двигатель имеет два (или более) рабочих цилиндра разного диаметра.

Турбокомпаундный двигатель

Турбокомпаундный двигатель — это двигатель внутреннего сгорания, в котором работа газов происходит не только в цилиндро-поршневой группе, но и в силовой турбине, связанной с коленчатым валом.

Роторный двигатель на ударной волне

Вы поворачиваете ключ зажигания — и двигатель Вашего автомобиля разрывает ударная волна. Это звучит катастрофой, но роторный двигатель на ударной волне может сделать автомобили гораздо более эффективными.

Двухтактный двигатель как альтернатива четырёхтактному, его преимущества и недостатки.

За время своего развития паровые машины значительно усовершенствовались, поэтому на них было обращено внимание при поиске замены двигателя внутреннего сгорания.

Повышается интерес к применению газотурбинного двигателя для привода автомобиля, но ряд особенностей газовой турбины служат причиной того, что она до сих пор не применяется в автомобилях.

Двигатель Стирлинга является новым возможным источником механической энергии для привода автомобиля.

Увеличиваем пробег

Современные технологии помогут сделать двигатель внутреннего сгорания более экологически чистым.

Отключение цилиндров

Если при частичной нагрузке многоцилиндрового двигателя выключить несколько цилиндров, то остальные будут работать при большей нагрузке с лучшим КПД.

Плазменное зажигание может обеспечить гарантированное зажигание бедных топливовоздушных смесей, использование которых в двигателе позволяет экономить топливо.

В статье рассмотрены преимущества и недостатки двигателей внутреннего сгорания в зависимости от таких параметров, как диаметр цилиндра, ход поршня и объём камеры сгорания.

«Эволюция ДВС достигла пика?»

В основе всего многообразия сложных механизмов, которыми мы пользуемся сегодня, лежат достижения технической революции конца XIX – начала XX веков. На протяжении всего прошлого столетия изобретения этого периода лишь оттачивались. Совершенствовались технологические процессы, уменьшались допуски, происходила автоматизация, внедрялись второстепенные инновации, направленные на улучшение характеристик той или иной продукции. Это касается и автомобильной промышленности, в особенности в части двигателестроения.

Дело в том, что четырехтактный двигатель внутреннего сгорания, ставший чуть менее ста лет назад основой автоиндустрии, имеет целый ряд недостатков, не позволяющих получать высокие показатели его общего КПД.

Так считается, что КПД классического автомобильного бензинового двигателя с принудительным искровым зажиганием составляет от 20 до 30%, дизельный двигатель может обеспечить 35-40%. В первой половине XX века это были выдающиеся характеристики на фоне пресловутого «КПД паровоза», который, как все мы помним из школьного курса физики, составлял 5-10%.

Читать еще:  Vw passat поставил двигатель

Впрочем, уже тогда инженерам было понятно, что необходимо добиваться лучших показателей, и уже в 1920 – 1940 годы для этого были разработаны практически все основные принципы, как то турбонаддув, прямой впрыск и т.д. К 1970 годам началась настоящая погоня за повышением эффективности, продолжающаяся по сей день. Были разработаны такие элементы как охлаждение рабочей смеси, изменение фаз газораспределения, поэтапный впрыск… Сегодня некоторые автопроизводители утверждают, что в современном бензиновом ДВС удается добиться общего КПД в 35-38%. Однако вопрос об эффективности усовершенствования старых технологий остается открытым.

Вся история ДВС – сплошная борьба инженеров с основополагающими особенностями конструкции. Если перечислять их вкратце, то это низкая топливная эффективность за счет слишком короткого цикла сгорания, 25-30% топлива в прямом смысле вылетает в трубу. Низкая механическая эффективность – большие потери на перемещение тяжелых деталей шатунно-поршневой группы, на трение, а так же на работу значительного количества навесного оборудования. Не следует забывать и о том, что в автомобиле ДВС, обладающий очень низким крутящим моментом на малых оборотах, нуждается в коробке передач, а это агрегат, в котором тоже теряется часть полученной энергии. Низкая термодинамическая эффективность – большая часть выделяемого тепла не переводится в полезную работу, ведь на это отведено лишь 0,25 всего цикла. Желающим более подробно ознакомиться с проблемой повышения КПД двигателя внутреннего сгорания могу порекомендовать следующую статью Игоря Исаева, разработчика одной из альтернативных конструкций двигателя.

Как правило, усилия конструкторов приводят к достижению выдающихся результатов в области распределения крутящего момента, повышения мощности и «эластичности» двигателя, снижения вибронагруженности…, но собственно КПД увеличивается не столь существенно, а значит затраты топлива на единицу полученной работы остаются относительно высокими.

Часто приходится сталкиваться с несоответствием реального и декларируемого производителем расхода бензина чуть ли не вдвое. Автомобиль с современными системами турбонаддува оказывается экономичным, только если очень бережно относится к педали газа и лишний раз ее не беспокоить.

Бывает и так, что новая модель автомобиля с двигателем, развивающим 150 л.с., ведет себя словно под капотом на пару десятков «лошадей» меньше, хотя в предыдущем поколении этой же модели ничего подобного не наблюдалось. Объясняется это, как правило, всего лишь новыми экологическими стандартами, ради достижения которых двигатель «душат» перенастройкой блока управления двигателем под использование в основном диапазоне оборотов обедненной смеси, а так же более эффективным каталитическим дожигателем.

Словом, складывается впечатление, что эволюция ДВС достигла своего пика, и в будущем нас ждет лишь увядание этой технологии. В последние годы это ощущение подкрепляется бурным развитием таких направлений, как гибриды и электромобили.

И все же уверенности в скором завершении эпохи ДВС у меня нет!

Не секрет, что параллельно с развитием двигателей Отто и Дизеля были попытки внедрения альтернативных конструкций – Аткинсона, Миллера, Стирлинга, Ванкеля. Есть и более экзотические, в том числе и отечественные, например двигатели Баландина и Фролова. Однако большого распространения они не получили. Пожалуй, только «роторы» Ванкеля применялись на немногочисленных моделях автомобилей вплоть до наших дней, но сейчас и они ушли в прошлое.

Победа силовым агрегатам Отто и Дизеля досталась по причине простоты конструкции, а значит и большей экономической эффективности в производстве. Но сейчас, когда стало возможным добиться гораздо большей механической точности, востребованными оказываются и некоторые, казалось бы, давно забытые идеи. Так для многих современных «гибридов» наиболее удачным оказался двигатель Аткинсона, изобретенный еще в конце XIX века. Его использует корпорация Toyota.

Предпринимаются и попытки внедрения принципиальных инноваций. Например, ученые из Университета Висконсин-Мэдисон в США разработали технологию, позволяющую одновременно использовать преимущества обоих видов топлива, бензина и дизеля, для двигателей внутреннего сгорания. Они предложили осуществлять впрыск дизельного топлива и бензина в цилиндр последовательно в ходе каждого цикла. Это необходимо для самовоспламенения топливной смеси, — вместо свечей зажигания работают капельки солярки, воспламеняющиеся под давлением. Пока эта технология не внедрена в производство, но вполне вероятно у нее есть перспективы.

В России компания «Ё-авто» занимается разработкой роторно-лопастного двигателя, в котором к минимуму сведены потери на трение. Разработчики этой конструкции уже заявляли, что КПД нового двигателя должен составить 42-45%, что весьма неплохо для бензинового агрегата.

Некоторые производители идут по пути дальнейшего увеличения степени сжатия, вплоть до почти «дизельных» значений, для достижения более полного сгорания бензиновой смеси. Не так давно компания Mazda начала производство бензиновых двигателей Skyaktiv-G, в которых степень сжатия составляет 14:1.

Если учесть, что двигатель внутреннего сгорания – это еще и обеспечение постоянного спроса на нефтепродукты, вряд ли в ближайшем будущем мир сможет отказаться от столь «ценной» технологии. Автопроизводители просто обречены заниматься ее дальнейшим совершенствованием. Впрочем, направления этой работы могут быть различны. Надеюсь, в рамках очередной дискуссии на нашем портале представители ведущих автомобильных марок расскажут о своих наиболее перспективных разработках в области повышения эффективности ДВС.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector