Что такое класс изоляции в двигателях - Авто журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое класс изоляции в двигателях

Класс изоляции электродвигателей

Основной фактор, влияющий на ускорение процесса старения систем изоляции и электроизоляционных материалов в электромеханических изделиях, — температурные показатели. Специалистам всегда необходимо оценивать стойкость электрической изоляции на изменение температур. Для упрощения этого процесса предусмотрены классы нагревостойкости изоляции.

Нагревостойкость по праву можно считать одним из влиятельнейших качеств материалов, отвечающих за электроизоляцию. Ведь опираясь на этот показатель можно определить максимально возможную нагрузку, которую выдержит электрическая машина или аппарат. Многие материалы не способны перенести высокие температуры, увеличение градусов ведёт к обугливанию, а сам материал начинает выполнять функцию проводника. Кроме того, все материалы при длительном воздействии высокой температуры становятся более хрупкими, подвержены разрешениям и потере изолирующих свойств. Такое процессы носят название теплового старения. Именно нагревостойкость указывает на то, какую максимальную температуру может выдержать материал и влияние на него резких смен температуры. Срок службы, который будут иметь электродвигатели, а также надёжность работы определяются именно по показателю нагревостойкости.
Существует 7 классов материалов, различающихся по нагревостойкости изоляции:

К классу Y относятся материалы из бумаги, текстиля, хлопка, целлюлозы, натурального шёлка, полиамидов, пластмассы, содержащей органические наполнители, а также древесины. Температура стойкости изоляции — 900С.
Класс А – это материалы предыдущего класса, которые специально пропитаны изоляционным составом, погружены в такие диэлектрики, как натуральные смолы, лаки асфальтовые, масляные, эфирцеллюлозные, термопластичные компаунды, трансформаторное масло. Также список можно дополнить лакотканями, изоляционными лентами, лакобумагой, электрокартоном, гетинаксом, текстолитом, пропитанным деревом, древесными слоистыми пластиками, отдельными типами синтетических пленок, изоляцией проводов, в основе которой находится хлопчатобумажная ткань, шелк, лавсан, изоляцией из эмали. Температура — 1050С.
В класс Е входят волокна, синтетические плёнки, лакоткани, в основе которых находятся синтетические лаки, компаунды и синтетические смолы. Температура — 1200С.
Класс В – это материалы, содержащие слюду, стекловолокно, асбестовые волокна, пленкостеклопласт, пластмасса без органического наполнителя, слоистые пластики. Температура — 1300С.
В класс F входят те же элементы, но имеющие неорганическую подложку или вовсе без подложки. Также можно отнести сюда пленкостеклопласт, изоляция из стекловолокна или асбеста типов ПСДТ, ПСД, изоляция из эмали, в основе которой находится капрон. Температура — 1550С.
Класс Н вмещает в себя материалы класса В, содержащие слюду, стекловолокно, асбест и имеющие неорганическую подложку или вовсе созданные без подложки. Список дополняют эластомеры из органического кремния, изоляция из стекловолокна, асбеста, эмали. Температура — 1800С.
В класс С входит стекло, слюда, материалы из стекловолокна, кварц, керамика электротехническая, шифер, слюдяные материалы без подложки и с подложкой из стекловолокна. Температура — свыше 1800С.
Чаще всего в производстве можно встретить электромашины с изоляцией классов F и В. Практически не производится изоляция А-класса, а класс Е можно применять только в машинах, имеющих малую мощность. Для машин, необходимых для работы в жёстких условиях, подходит изоляция класса А. Использование материалов, стойко переносящих высокие температуры, позволяет сделать, например, асинхронный двигатель более компактным.

Наибольшая нагревостойкость у слюдяных и стекловолокнистых материалов, которые имеют в своём составе связующие из органического кремния, а также пропитывающие составы.
Однако несмотря на исследование параметров нагревостойкости определить, какую максимальную температуру способна выдержать самая нагретая деталь в мотор-редукторе, крайне сложно. Стандарты температур – это самые низкие допустимые пределы. Степень изоляции также зависит и от температурных показателей окружающей среды.

Температура электродвигателей во время их ремонта или эксплуатации определяется с использованием термометров расширения, термопар, терморезисторов. С их помощью можно измерить не только температурный показатель обмотки, но других элементов двигателя. Может также применяться косвенный метод – в этом случае измеряется сопротивление при постоянном уровне тока. Электродвигатель может выйти из строя, если увеличить рабочий ток и создать перегрев обмоток. Для того, чтобы этого не произошло, и осуществляется проверка температуры нагрева. Класс изоляции и определяет допустимую температуру. Также причина может крыться в ухудшении условий охлаждения: обращайте внимание на исправность вентилятора, загрязнения в двигателе и внешние предметы на нём. Перегрузка может привести к выводу электродвигателя из строя: вместе с увеличением тока квадратично повышается температура. При длительной перегрузке может произойти порча изоляции обмоток.

Как определить температуру обмоток электродвигателей переменного тока по их сопротивлению

Измерение температуры обмоток при испытаниях электродвигателя на нагревание

Температуру обмоток определяют при испытаниях двигателя на нагревание. Испытания на нагревание производят для определения абсолютной температуры или превышения температуры обмотки или частей электродвигателя относительно температуры охлаждающей среды при номинальной нагрузке Электроизоляционные материалы, применяемые в конструкциях электрических машин, стареют и постепенно теряют электрическую и механическую прочность. Быстрота этого старения зависит главным образом от температуры, при которой работает изоляция.

Многочисленными опытами установлено, что долговечность (срок службы) изоляции сокращается вдвое, если температура, при которой она работает, на 6-8 °С превышает предельную для данного класса нагревостойкости.

ГОСТ 8865-93 устанавливает следующие классы нагревостойкости электроизоляционных материалов и характерные для них предельные температуры:

Класс нагревостойкости — Y А Е В F Н С Предельная температура, соответственно — 90, 105, 120, 130, 155, 180, св.180 гр. С

Испытания на нагревание могут осуществляться при непосредственной нагрузке и косвенным методом (нагревание от основных потерь). Их проводят до установившейся температуры при практически неизменной нагрузке. Установившейся считают температуру, которая в течение 1 ч изменяется не более чем : 1 °С.

В качестве нагрузки при испытаниях на нагревание применяют различные устройства, наиболее простыми из которых являются различные тормоза (колодочные, ленточные и т.д.), а также нагрузки, обеспечиваемые генератором, работающим реостат.

Читать еще:  График повторно кратковременного режима работы двигателя

При испытаниях на нагревание определяют не только абсолютную температуру, но и превышение температуры обмоток над температурой охлаждающей среды.

Таблица 2 Предельно допустимые превышения температур частей двигателя

Предельно допустимое пре­ вышение температуры, °С, при изоляционных материа­ лах класса нагревостойкости

Метод измерения температуры

Обмотки переменно­ го тока двигателей 5 000 кВ-А и более или с длиной сер­ дечника 1 м и более

Сопротивления или температурных ин­ дикаторов, уложен­ ных, в пазы

То же, но менее 5 000 кВ А или с длиной сердечника 1 м и более

Термометра или со­ противления

Стержневые обмотки роторов асинхрон­ ных двигателей

Термометра или со­ противления

Термометра или температурных ин­ дикаторов

Сердечники и другие стальные части, со­ прикасающиеся с обмотками

То же, не соприка­ сающиеся с обмот­ ками

Превышение температуры этих частей не должно превышать значений, которые создавали бы опасность повреждения изоляционных или дру­гих смежных материалов

Как видно из таблицы, в ГОСТе предусмотрены различные методы измерения температур в зависимости от конкретных условий и частей машин, у которых необходимо проводить измерения.

Методом термометра определяют температуру поверхности в точке приложения (поверхность корпуса, подшипников, лобовых частей обмотки), температуру окружающей среды и воздуха, поступающего и выходящего из двигателя. Применяют как ртутные, так и спиртовые термометры. Вблизи сильных переменных магнитных полей следует применять только спиртовые термометры, так как в ртути наводятся вихревые токи, искажающие результаты измерения. Для лучшей передачи теплоты от узла к термометру резервуар последнего обертывают фольгой, а затем прижимают к нагретому узлу. Для теплоизоляции термометра поверх фольги накладывают слой ваты или войлока таким образом, чтобы последний не попал в пространство между термометром и нагретой частью двигателя.

При измерении температуры охлаждающей среды термометр следует помещать в закрытый металлический стаканчик, заполненный маслом и защищающий термометр от лучистой теплоты, испускаемой окружающими тепловыми источниками и самой исследуемой машиной, и случайных потоков воздуха.

При измерении температуры наружной охлаждающей среды несколько термометров располагают в разных точках вокруг исследуемой машины на высоте, равной половине высоты машины, и на расстоянии 1 — 2 м от нее. За температуру охлаждающей среды принимают среднее арифметическое значение показаний этих термометров.

Метод термопары , широко применяемый для измерения температур, используется в основном в машинах переменного тока. Термопары закладывают в пазы между слоями обмоток и на дно паза, а также в других труднодоступных местах.

Для измерения температур в электрических машинах обычно применяют медно-константановые термопары, состоящие из медной и константановой проволок диаметром около 0,5 мм. В одной паре концы термопары спаяны между собой. Места спая обычно помещают в ту точку, где необходимо измерить температуру («горячий спай»), а вторую пару концов подключают непосредственно к зажимам чувствительного милливольтметра с большим внутренним сопротивлением. В том месте, где ненагреваемый конец константановой проволоки соединяется с медным проводником (на клемме измерительного прибора или переходной клемме), образуется так называемый «холодный спай» термопары.

На поверхности контакта двух металлов (константана и меди) возникает ЭДС, пропорциональная температуре в месте контакта, причем на константане образуется минус, а на меди плюс. ЭДС возникает как на «горячем», так и на «холодном» спае термопары. Однако поскольку температуры спаев разные, то и значения ЭДС различны, а так как в контуре, образованном термопарой и измерительным прибором, эти ЭДС направлены навстречу друг другу, то милливольтметр всегда измеряет разность ЭДС «горячего» и «холодного» спаев, соответствующую разности температур.

Опытом установлено, что ЭДС медно-константановой термопары составляет 0,0416 мВ на 1 °С разности температур «горячего» и «холодного» спаев. В соответствии с этим можно отградуировать шкалу милливольтметра в градусах Цельсия. Так как термопара фиксирует только разность температур, то для определения абсолютной температуры «горячего» спая следует к показаниям термопары прибавить температуру «холодного» спая, из-меренную термометром.

Метод сопротивления — определение температуры обмоток по их сопротивлению постоянному току часто используется для измерения температуры обмоток. Метод основан на известном свойстве металлов изменять свое сопротивление в зависимости от температуры.

Для определения превышения температуры осуществляют измерения сопротивления обмотки в холодном и нагретом состояниях и производят вычисления.

Следует учитывать, что с момента отключения двигателя до начала замеров проходит некоторое время, в течение которого обмотка успевает остыть. Поэтому для правильного определения температуры обмоток в момент отключения, т.е. в рабочем состоянии двигателя, после отключения машины по возможности через равные промежутки времени (по секундомеру) производят несколько измерений. Эти промежутки не должны превышать времени от момента выключения до первого замера. Затем производят экстраполяцию измерений, построив график R = f(t).

Методом амперметра — вольтметра измеряют сопротивление обмотки. Первое измерение производят не позднее чем через 1 мин от момента отключения двигателя для машин мощностью до 10 кВт, через 1,5 мин — для машин мощностью 10—100 кВт и через 2 мин — для машин мощностью выше 100 кВт.

Если первое измерение сопротивления произведено не более чем через 15 — 20 с момента выключения, то за сопротивление принимают наибольшее из первых трех измерений. Если первое измерение произведено более чем через 20 с после отключения машины, то устанавливают поправку на остывание. Для этого производят 6 — 8 измерений сопротивления и строят график изменения сопротивления при остывании. По оси ординат откладывают соответствующие измеренные сопротивления, а по оси абсцисс — время (точно в масштабе), прошедшее от момента выключения электродвигателя до первого измерения, промежутки между измерениями и получают кривую, изображенную на графике сплошной линией. После этого продолжают эту кривую влево, сохраняя характер ее изменения, до пересечения с осью ординат (изображена пунктирной линией). Отрезок на оси ординат от начала координат до пересечения с пунктирной линией с достаточной точностью определяет искомое сопротивление обмотки двигателя в горячем состоянии.

Читать еще:  Что является топливом для бензинового двигателя

Основная номенклатура двигателей, установленных на промышленных предприятиях, включает в себя изоляционные материалы классов А и В. Например, если для пазовой изоляции применен материал на основе слюды класса В, а для обмотки провод ПБД с хлопчатобумажной изоляцией класса А, то двигатель по классу нагревостойкости относится к классу А. Если температура охлаждающей среды ниже 40 °С (нормы для которой приведены в табл.), то для всех классов изоляции допускаемые превышения температуры могут быть увеличены на столько градусов, на сколько температура охлаждающей среды ниже 40 °С, но не более чем на 10 °С. Если температура охлаждающей среды 40 — 45 °С, то предельно допустимые превышения температуры, указанные в табл., снижаются для всех классов изоляционных материалов на 5 °С, а при температурах охлаждающей среды 45—50 °С — на 10 °С. За температуру охлаждающей среды обычно принимают температуру окружающего воздуха.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Классы изоляции

Нагревостойкость изоляции

Нагревостойкость – это показатель, указывающий на способность того или иного материала сохранять свои свойства при повышении их температуры.

При сильном нагреве, многие материалы теряют свои свойства — разрушаются и обугливаются, это так же касается и изоляционных материалов.
Так как работа электрических машин сопровождается выделением тепла, то материалы, применяемые в качестве изоляционных, обязаны выдерживать эти температуры. При этом, важно сохранять изолирующие свойства.
Все изоляционные материалы, применяемые в электроэнергетике, разделяют на семь групп, в зависимости от нагревостойкости:

Разновидности классов изоляции

На рисунке ниже, показаны существующие классы изоляции и предельные температуры для них.

Класс Y — волокнистые материалы из целлюлозы, хлопка, натурального шёлка. В основном это – различные ткани (хлопковые, шелковые, хлопчатобумажные), бумажные (картон, бумага), пластмассы и древесина.

  • электрокартон

Класс A – как правило к такому классу относят материалы класса Y только пропитанные или погруженные в специальный жидкий диэлектрик, который усиливает диэлектрическую прочность, а еще повышает нагревостойкость. К этим жидким диэлектрикам относятся – трансформаторное масло, органические или натуральные смола, различные типы лаков и так далее.
При совмещении двух видов диэлектриков, мы получаем: лакобумаги, лакоткани, текстолит, гетинакс.

Класс E — синтетические органические материалы или простые сочетания этих материалов, при испытаниях которых было установлено, что они способны работать да уровня температуры соответствующей этому классу, то есть 120 градусов Цельсия. В основном это синтетические материалы, а также их сочетания.

Класс B — материалы на основе асбеста, слюды и стекловолокна, которые применяются в сочетании с различными органическими пропитывающими и связующими диэлектрическими составами.
К ним относят: миканиты, слюдиниты, стеклоткани, асбестовые пряжи и ткани.

Класс F – те же материалы, что и в классе B, но уже в сочетании с неорганическими пропитывающими и связующими в роли которых выступают термостойкие смолы и лаки.

Класс H – так же материалы класса B в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические лаки, смолы и эластомеры.

Класс C – материалы с рабочей температурой свыше 180 градусов по Цельсию и к ним относятся: стекловолокнистые материалы, стекло, шифер, керамика, слюда, материалы из слюды, асбестоцемент, а также эти же материалы в сочетании с различными кремнийорганическими смолами и лаками.

Самыми распространенными классами изоляции стали: класс изоляции E, который применяется в электрических машинах малой мощности; классы изоляции F и B применяются в большинстве электрических машин; для изготовления ответственных электрических машин, работающих в тяжелых и сверхтяжелых условиях, применяется класс изоляции H.

При проектировании и выборе электрических машин, важно учитывать классы изоляции. Так как это может послужить причиной преждевременного выхода из строя электрической машины.

Классы изоляции по нагревостойкости

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. При повышении температуры многие из этих материалов начинают обугливаться и становятся проводниками.

Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением. Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью.

Нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально составляет 15—20 лет. Электроизоляционные материалы по нагревостойкости делят на семь классов:

Ниже перечислены материалы, относящиеся к каждому из этих классов: класс Y — текстильные и бумажные материалы, изготовленные из хлопка, натурального шелка, целлюлозы и полиамидов (ленты, бумага, картон, фибра), древесина и пластмассы с органическими наполнителями;

класс А — материалы класса Y, пропитанные изоляционным составом или погруженные в жидкие диэлектрики (натуральные смолы, масляные, асфальтовые, эфирцеллюлозные лаки, трансформаторное масло, термопластичные компаунды); лакоткани, изоляционные ленты, лакобумаги, электрокартон, гетинакс, текстолит, пропитанное дерево, древесные слоистые пластики, некоторые синтетические пленки, изоляция проводов (ПБД, ПЭВЛО, ПЭЛШО и др.) из хлопчатобумажной ткани, шелка и лавсана, эмалевая изоляция проводов (ПЭЛ ПЭМ ПЭЛР и ПЭВД и др.);

класс Е — синтетические пленки и волокна, некоторые лакоткани на основе синтетических лаков, термореактивные синтетические смолы и компаунды (эпоксидные, полиэфирные, полиуретановые, изоляция проводов типов ПЛД, ПЭПЛО из лавсана, эмалевая изоляция проводов типов ПЭВТЛ, ПЭТВ и др. на основе полиуретановых и полиамидных смол);

Читать еще:  Что такое инжекторный двигатель разрезе

класс В — материалы на основе слюды (миканиты, микаленты, слюдиниты, слю-допласты), стекловолокна (стеклоткани, стеклолакоткани), асбестовых волокон (пряжа, бумага, ткани) с бумажной, тканевой или органической подложкой; пленкостеклопласт «Изофлекс»; пластмассы с неорганическим наполнителем; слоистые пластики на основе стекловолокнистых и асбестовых материалов; термореактивные синтетические компаунды; эмалевая изоляция проводов типов ПЭТВ, ПЭТВП и др. на основе полиэфирных лаков и термопластических смол. Пропитывающими составами служат битумно-масляно-смоляные лаки на основе природных и синтетических смол;

класс F — материалы, указанные в классе В, из слюды, стекловолокна, асбеста, но без подложки или с неорганической подложкой; пленкостеклопласт «Имидофлекс», стекловолокнистая и асбестовая изоляция проводов типов ПСД, ПСДТ, а также эмалевая изоляция проводов типов ПЭТ-155, ПЭТП-155 на основе капрона. Пропитывающими составами служат термостойкие синтетические лаки и смолы;

класс Н — указанные в классе В материалы из слюды, стекловолокна и асбеста без подложки или с неорганической подложкой, кремнийорганические эластомеры, стекловолокнистая и асбестовая изоляция проводов типов ПСДК, ПСДКТ, эмалевая изоляция проводов типов ПЭТ-200, ПЭТП-200 и др. на основе кремнийорганических лаков; пропитывающими составами служат кремнийорганические лаки и смолы;

класс С — слюда, стекло, стекловолокнистые материалы, электротехническая керамика, кварц, шифер, асбестоцемент, материалы из слюды без подложки или со стекловолокнистой подложкой, полиимидные и полифторэтиленовые пленки. Связующим составом служат кремнийорганические и элементоорганические лаки и смолы.

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза.

Наибольшей нагревостойкостью обладают стекловолокнистые и слюдяные материалы, содержащие кремнийорганические связующие и пропитывающие составы, эмалевая изоляция проводов на основе кремнийорганических лаков и синтетические пленки «Изофлекс», «Имидофлекс» и др.

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

Поэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.

В таблице приведены в качестве примера предельно допускаемые превышения температуры ?max для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец —

с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Если температура окружающей среды больше или меньше +40 или +25 °С, то стандарт разрешает определенные изменения допустимых превышений температур. При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Классы нагревостойкости изоляции и режим работы электродвигателей

Поскольку для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, то для оценки стойкости электрической изоляции к воздействию температуры приняты классы нагревостойкости.

В настоящее время наиболее распространены двигатели с изоляцией обмотки по классу F. Температура обмотки этих двигателей не должна повышаться более, чем на 105°С при температуре окружающей среды до +40°С.

Классы нагревостойкости изоляции
Обозначение класса нагревостойкостиYAEBFH200220
Температура, °C90105120130155180200220

Класс нагревостойкости изоляции электротехнического изделия отражает максимальную рабочую температуру, свойственную данному изделию при номинальной нагрузке и других условиях.

Изоляция под действием данной максимальной температуры должна иметь нагревостойкость не менее температуры, соответствующей классу нагревостойкости электротехнического изделия.

Приведенные температуры являются фактической температурой изоляции, но не превышением температуры электротехнического изделия. В стандартах на электротехнические изделия обычно нормируют величину превышения температуры, а не фактическую температуру. При разработке стандартов, устанавливая методы измерения и допустимое превышение температуры, следует учитывать такие факторы, как конструкция, температурная проводимость и толщина изоляции, доступность изолированных частей, метод вентиляции, характеристики нагрузки и т. д.

Основанием для установления рациональных температурных пределов изоляции является только опыт или соответствующие испытания (см. ГОСТ 8865–93).

Номинальная мощность всегда зависит от режима работы и продолжительности включения. Наиболее распространены электродвигатели с режимом работы S1, рассчитанные на продолжительный режим работы.

Этот режим предусматривает эксплуатацию с постоянной нагрузкой, длительности которого достаточно для работы двигателя в условиях стабильного теплового режима. Реже используются электродвигатели с кратковременным режимом работы S2, предполагающим эксплуатацию в режиме постоянной нагрузки в течение определенного ограниченного промежутка времени, сопровождаемого паузой с остыванием двигателя до температуры окружающей среды.

Режимы работы электродвигателей определяет стандарт IEC 34 (EN 60034).

Почему выгодно купить электродвигатели в компании «Энерго ВН»?

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию