Что такое кислородный датчик двигателя - Авто журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое кислородный датчик двигателя

Устройство и принцип работы кислородного датчика

Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название – лямбда-зонд.

  1. Коэффициент избытка воздуха λ
  2. Назначение датчиков кислорода
  3. Конструкция и принцип работы кислородного датчика
  4. Ресурс кислородника и его неисправности
  5. Виды лямбда-зондов

Коэффициент избытка воздуха λ

Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.

В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.

Зависимость мощности (P) и расхода топлива (Q) от коэффициента избытка воздуха

Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это “на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы”.

В зависимости от значения λ различают три вида топливовоздушной смеси:

  • λ = 1 – стехиометрическая смесь;
  • λ 1 – “бедная” смесь (избыток – воздух; недостаток – топливо).

Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 (“богатая” смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа каталитического нейтрализатора происходит при стехиометрическом составе топливовоздушной смеси.

Назначение датчиков кислорода

Стандартно в современных автомобилях используется два датчика кислорода (для рядного двигателя). Один перед катализатором (верхний лямбда-зонд), а второй после него (нижний лямбда-зонд). Различий в конструкции верхнего и нижнего датчиков нет, они могут быть одинаковыми, но выполняют разные функции.

Верхний или передний кислородный датчик определяет содержание оставшегося кислорода в отработавших газах. По сигналу с данного датчика блок управления двигателем “понимает”, на каком типе топливовоздушной смеси работает двигатель (стехиометрической, богатой или бедной). В зависимости от показаний кислородника и требуемого режима работы, ЭБУ корректирует количество топлива, подаваемого в цилиндры. Как правило, топливоподача корректируется в сторону стехиометрической смеси. Следует отметить, что при прогреве двигателя сигналы с датчика игнорируются ЭБУ двигателя до достижения им рабочей температуры. Нижний или задний лямбда-зонд используется для дополнительной корректировки состава смеси и контроля исправности работы каталитического нейтрализатора.

Конструкция и принцип работы кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них – датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод – осуществляет контакт с выхлопными газами.
  • Внутренний электрод – контактирует с атмосферой.
  • Нагревательный элемент – используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит – расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника – имеет специальные отверстия (перфорацию) для проникновения отработавших газов.

Устройство наконечника лямбда-зонда

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ – бедная смесь, от 450 до 900 мВ – богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Ресурс кислородника и его неисправности

Лямбда-зонд – один из наиболее быстро изнашиваемых датчиков. Это связано с тем, что он постоянно контактирует с отработавшими газами и его ресурс напрямую зависит от качества топлива и исправности двигателя. Например, циркониевый кислородник имеет ресурс порядка 70-130 тысяч километров пробега.

Поскольку работа обоих кислородных датчиков (верхнего и нижнего) контролируется системой бортовой диагностики OBD-II, при выходе из строя любого из них будет зафиксирована соответствующая ошибка, а на панели приборов загорится контрольная лампа неисправности “Check Engine”. Диагностировать неисправность в данном случае можно с помощью специального диагностического сканера. Из бюджетных вариантов стоит обратить внимание на Scan Tool Pro Black Edition.

Сканер Scan Tool Pro Black Edition

Данный сканер корейского производства отличается от аналогов высоким качеством сборки и возможностью диагностики всех узлов и агрегатов автомобиля, а не только двигателя. Также он способен отслеживать показания всех датчиков (в том числе и кислородного) в режиме реального времени. Сканер совместим со всеми популярными диагностическими программами и, зная допустимые по вольтажу значения, можно судить об исправности датчика.

Сигнал исправного кислородного датчика

При исправной работе кислородного датчика характеристика сигнала представляет собой правильную синусоиду, демонстрирующую частоту переключений не менее 8 раз в течение 10 секунд. Если датчик вышел из строя, то форма сигнала будет отличаться от эталонной, либо его отклик на изменение состава смеси существенно замедлится.

Основные неисправности кислородного датчика:

  • износ в процессе эксплуатации (“старение” датчика);
  • обрыв электрической цепи нагревательного элемента;
  • загрязнение.

Все эти виды проблем могут быть спровоцированы использованием некачественного топлива, перегревом, добавлением различных присадок, попаданием в зону работы датчика масел и чистящих средств.

Признаки неисправности кислородника:

  • Индикация сигнальной лампы неисправности на приборной панели.
  • Потеря мощности.
  • Слабый отклик на педаль газа.
  • Неровная работа двигателя на холостых оборотах.

Виды лямбда-зондов

Помимо циркониевых используются также титановые и широкополосные датчики кислорода.

  • Титановые. Этот вид кислородников имеет чувствительный элемент из диоксида титана. Рабочая температура такого датчика начинается от 700 °C. Титановые лямбда-зонды не требуют наличия атмосферного воздуха, поскольку принцип их работы основан на изменении выходного напряжения, в зависимости от концентрации кислорода в выхлопе.
  • Широкополосный лямбда-зонд представляет собой усовершенствованную модель. Он состоит из цикрониевого датчика и закачивающего элемента. Первый измеряет концентрацию кислорода в отработавших газах, фиксируя напряжение, вызванное разницей потенциалов. Далее происходит сравнение показания с эталонной величиной (450 мВ), и, в случае отклонения, подается ток, провоцирующий закачивание ионов кислорода из выхлопа. Это происходит до тех пор, пока напряжение не станет равным заданному.

Лямбда-зонд является очень важным элементом системы управления двигателем, а его неисправность может привести к сложностям в управлении автомобилем и стать причиной повышенного износа остальных деталей двигателя. А поскольку он не подлежит ремонту, его необходимо сразу заменить на новый.

Неисправность датчика кислорода

    134 13 128k
    5 0 9k

Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.

Назначение датчика кислорода

Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».

Читать еще:  Все циклы работы двигателя

Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.

В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.

На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.

Влияет ли лямбда зонд на запуск — что будет?

Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.

Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.

Признаки неисправности датчика кислорода

Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:

  • Ухудшение тяги и снижение динамических характеристик автомобиля.
  • Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет.
  • Увеличение расхода топлива. Обычно перерасход незначительный, однако можно определить при программном замере.
  • Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.

Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).

Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).

Причины неисправности датчика кислорода

В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.

  • Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
  • Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
  • Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
  • Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
  • Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
  • Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
  • Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
  • Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
  • Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.

Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

  • Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
  • Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
  • При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

Читать еще:  Датчик холостого хода для двигателя ланос

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Как устранить неисправность датчика кислорода

Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.

Метод первый

Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.

Процедура по восстановлению выполняется по следующему алгоритму:

  • Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
  • Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
  • Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.

Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.

Метод второй

Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:

  • Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
  • Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
  • Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.

Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.

Что такое кислородный датчик в автомобиле (лямбда зонд)

Размеры кислородного датчика не самые великие, устройство механизма также не отличается сложным исполнением, тем не менее, его функции в работе двигателя играют важную роль. В связи с этим, износ кислородного датчика, особенным образом отразится на работе всей моторной системы. Данная неполадка существует с того момента, как появились инжекторные двигатели, поэтому для владельцев подобных автомобилей это постоянная, непримиримая борьба. Ниже постараемся разобраться, что входит в основные задачи механизма, как провести диагностику поломки и заменить изношенный кислородный датчик.

Принцип действия кислородного датчика. Его основные функции

Кислородный датчик носит название, не соответствующее его реальным функциям. Он реагирует совсем не на то вещество, в честь которого был назван. Монтаж устройства осуществляется в области системы выхлопов, в непосредственной близости от катализатора. Оборудован электродом, местоположение которого определяется внутренней полостью системы выхлопа.

Газы, выделяемые в результате сгорания топлива, направляются в выхлопную систему, где кислородный датчик, захватывая частицы не израсходованного горючего вещества, заряжается электричеством, сигнализируя об этом контроллеру, по средствам передачи напряжения незначительного размера. Блок управления двигателем, в свою очередь, проанализировав полученную информацию, определяет решение, в соответствии с которым устанавливается соотношение и регулировка состава горючей смеси и выбранного режима работы двигателя, в настоящий момент.

В задачи кислородного датчика входят постоянный контроль данного соотношения, чтобы добиться идеального состава горючей жидкости. Таким образом, он, на постоянной основе, осуществляет мониторинг соотношения горючего и воздуха, в соответствующем режиме эксплуатации автомобиля.

При нарушении работоспособности кислородного датчика, прекращается поступление сигналов о происходящей ситуации, контроллер больше не снабжается сведениями касающиеся состояния выхлопов, за этим следует установление режима аварийной работы двигателя. Состав топливной смеси больше не поддается контролю, следовательно, его транспортировка осуществляется исключительно для поддержания работоспособности ДВС.

В результате, потребление горючей жидкости повышается (увеличивается расход топлива), при этом условия функционирования двигателя становятся не самыми благоприятными. Передвигаться в дальнейшем, в подобных условиях, чревато нарушением работы силовой системы. Этот режим позволяет доехать до станции техобслуживания, не больше.

Нарушение работоспособности кислородного датчика

Все детали автомобиля имеют свой срок годности или срок износостойкости. Кислородный датчик не исключение. На случай выхода его из строя, на приборной панели имеется специальный индикатор, сигнализирующий об этом Check— Engine. Он дает ясно понять, что двигатель находится в режиме аварийного функционирования.

Для конкретизации проблематики, осуществляются мероприятия по выявлению проблемы при помощи диагностики, по средствам бортового компьютера. Аппаратура должна определить наименование ошибки, получив которую, можно воспользоваться техническими документами, прилагаемыми с автомобилем, для понимания причины нарушения. Если это был кислородный датчик, проводится безотлагательная замена.

В чем причина износа?

Смесь газов, которая выделяется при обработке горючей жидкости, является достаточно сложной структурой, с богатым составом. Данный состав может содержать элементы, влияющие, на электроды датчика, негативным образом. Природа появления подобных примесей может быть различной, но основная причина — это покупка бензина, изначально не качественного, на станциях, не проверенных долгим использованием.

К сожалению, подобных заправок не так мало. В результате длительной эксплуатации, большое воздействие оказывают процессы окисления, что влечет к снижению работоспособности, выражаемое в передаче данных, не устраивающих нормальную работу двигателя. Осуществляется переход на аварийный режим эксплуатации.

Но это не единственная причина, по которой перестает функционировать кислородный датчик. Распространенным источником является изношенная прокладка головки блока цилиндров. В результате этого, в камере сгорания образуется антифриз, что не приемлемо. Неизвестное химическое соединение, впервые попавшее в систему выхлопа, снижает износостойкость, приводя к быстрой потере работоспособности датчика.

Установка нового кислородного датчика

В общем, установка нового кислородного датчика не представляется сложным мероприятием. В работе потребуется эстакада или смотровая яма, в зависимости от возможностей. Особое значение играет плотная фиксация транспортного средства, так как безопасность, при любой работе, является самым главным направлением. В противном случае, непредвиденное перемещение, может привести к серьезным травмам.

  • Далее проводится работа с аккумулятором. От нее отсоединяют «минусовой» провод. Такие мероприятия являются неотъемлемой частью работы с электроникой. Если этого не сделать, то возможно образование короткого замыкания. Провод контакта датчика с основным компьютером требуется отсоединить. Проведя данные мероприятия, можно говорить о готовности к замене.
  • Крепеж датчика ослабляется соответствующим ключом. Чтобы избежать получения ожогов, все мероприятия проводятся на двигателе в холостом режиме. В случае отсутствия продвижения в демонтаже, прикладывать излишние усилия не следует, иначе можно повредить катализатор, что только повысит расходы на ремонт системы выхлопа.

Здесь велика вероятность появления прикипевших соединений, удаление которых целесообразнее проводить с помощью тормозной жидкости или керосина. Как правило, такие процессы сопровождаются образованием ржавчины, которая под воздействием данных веществ, частично растворяется, что позволяет выкрутить кислородный датчик. Как правило, подобный подход решает проблему.

Открутив датчик, он извлекается вместе со штекером из-под капота. Далее, устанавливается новое устройство, с последующим подключением. Закручивание элемента должно быть максимально плотным, иначе возможна низкая герметизация, которая станет причиной образования отверстия, являющееся источником постороннего звука, при работе двигателя.

Видео

В общем, это все что нужно знать о кислородном датчике и его замене.

Кислородный коктейль: системы нейтрализации

На моторы уже давно накинули поводок экологических норм, и с каждым годом ошейник затягивают все туже. Во что превратилась жизнь современного дизеля, мы рассказывали в ЗР, 2014, № 1. Система нейтрализации отработавших газов бензинового мотора проще, но диктует свои условия игры постоянно.

ВЕЗДЕ ПОСПЕЛ

При всех различиях бензинового и дизельного моторов у них есть общий эковраг — выбросы оксидов азота (NO x). Они образуются в камере сгорания при высокой температуре и избытке воздуха в топливовоздушной смеси. В основном этот эффект снижают, совершенствуя конструкцию самого двигателя. Но все чаще одних конструктивных мер становится недостаточно, поэтому инженеры вынуждены применять решение для дизеля — систему рециркуляции отработавших газов (EGR), возвращающую часть их обратно на впуск. Это снижает количество кислорода в свежей топливовоздушной смеси и сбивает температуру сгорания в цилиндре. Конструктивно бензиновая система гораздо проще. Она состоит из управляющего клапана и канала отвода отработавших газов (ОГ).

Читать еще:  Холодный двигатель ваз 21011

Управляющий клапан EGR регулирует количество ОГ, идущих на впуск. Его работой заведует модуль управления двигателем. Залипание клапана в одном из открытых положений из-за нагара — самая распространенная неисправность. При этом в двигатель возвращаются большие порции ОГ с продуктами сгорания. Хотя ему прилично достается и при нормальной работе системы. Это очень хорошо видно по состоянию дроссельной заслонки, которая на некоторых моторах стоит слишком близко к трубке EGR. Уже к 30 000 км пробега на ней скапливаются масляные отложения и нагар. А если она еще и электронная, то рано или поздно из-за этого начнут плавать или даже зависать обороты.

За индикацию неисправностей EGR отвечает лампа Check. «Мозг» двигателя следит за системой с помощью датчиков. Чаще всего это лямбда-зонд и датчик абсолютного давления во впускном коллекторе. Иногда применяют варианты с дополнительными наблюдателями — датчиком положения клапана EGR и датчиком давления отработавших газов в трубке.

ПОСТФАКТУМ

В выпускной системе с оксидами азота борется трехкомпонентный нейтрализатор. Такое название он получил потому, что преобразует в нетоксичные вещества еще и угарный газ (СО) с углеводородом (СН). Состоит он из монолитного носителя с сотами, каналы которых покрыты активным слоем благородных металлов (платина, родий и палладий). Они выступают катализаторами химических реакций окисления и восстановления вредных выбросов. Для начала реакций нужен нагрев нейтрализатора до 250–550 ºC. Именно поэтому его устанавливают как можно ближе к двигателю.

Для преобразования СО и СН двигатель должен работать на обедненной смеси, чтобы в ОГ было достаточное количество остаточного кислорода. В этих условиях СО и СН окисляются в безвредный углекислый газ и воду. Преобразование NO x требует, напротив, обогащенной смеси. Под действием СО оксиды азота восстанавливаются до безвредного азота. При реакции высвобождается кислород, которого хватает для окисления СО и СН. Эффективная работа нейтрализатора достигается тонкой регулировкой состава топливовоздушной смеси на грани стехиометрического показателя (коэффициент избытка воздуха λ равен единице): от чуть бедной до слегка обогащенной. Для этого в выхлопную систему встроены датчики кислорода (лямбда-зонды). Первый, перед нейтрализатором, следит за содержанием остаточного кислорода в ОГ. По его показаниям модуль управления двигателем корректирует впрыск топлива. Второй датчик находится за нейтрализатором и нужен только для определения эффективности его работы.

АНАТОМИЯ ЗЛА

Датчики кислорода бывают двух видов: триггерный (скачкообразный сигнал) и широкополосный. Чувствительный элемент триггерного состоит из керамического корпуса (двуокись циркония), покрытого снаружи и изнутри электродами. Они изготовлены напылением слоя газопроницаемой платины и могут проводить ионы кислорода при температуре от 300 ºC. Чтобы достичь ее быстрее, в датчик встроен нагреватель. Внешняя часть элемента находится в потоке отработавших газов, а внутренняя — в среде окружающего воздуха.

Между электродами возникает разность потенциалов: в зависимости от доли кислорода в ОГ, от 0,1 В (бедная смесь) до 0,9 В (богатая смесь). При переходе от богатой смеси к бедной и наоборот датчик передает скачок сигнала. По нему ЭБУ и корректирует впрыск топлива. За счет этого он постоянно регулирует смесь для эффективной работы нейтрализатора.

Широкополосный датчик преобразует содержание кислорода в ОГ в значение тока. Он может измерять коэффициент избытка воздуха λ в диапазоне 0,7–4,0. При этом его сигнал непрерывный и более четкий. Это позволяет использовать его в дизельном моторе, который работает на очень бедных смесях. Датчик состоит из гальванического элемента Нернста и элемента кислородной накачки. Оба изготовлены из двуокиси циркония с напылением пористой платины. Между элементами есть диффузионный зазор (область измерения), в который поступают ОГ. Элемент Нернста устроен и работает как триггерный кислородный датчик, выдавая сигнал напряжения. По нему насосная ячейка управляет подачей кислорода в область измерения так, чтобы коэффициент избытка воздуха в ней всегда был равен единице. При работе двигателя на бедных смесях (большое содержание кислорода) насосный элемент откачивает ионы кислорода из области измерения. При работе двигателя на богатых смесях (низкое содержание кислорода) — наоборот. При этом элемент потребляет ток: положительный при откачке и отрицательный при накачке. По этой величине блок управления двигателем и определяет коэффициент избытка воздуха в ОГ.

Как правило, перед нейтрализатором ставят триггерный датчик. Но когда нужно очень точное регулирование смеси, все чаще используют широкополосный. А вот за нейтрализатором всегда идет более простой триггерный, так как он следит только за его работой и на двигатель не влияет.

ОТПЕЧАТКИ ПАЛЬЦЕВ

Беда в том, что из-за переднего кислородного датчика работа бензинового двигателя постоянно зажата в очень узкие рамки. А при его неисправности возможна нештатная работа мотора — от ярко выраженного перехода в аварийный режим и потери динамики, как на французских двигателях, до дерганья при разгоне на японских. При этом лампа Check загорается далеко не всегда. Благо, за выходными сигналами датчиков можно проследить с помощью компьютерной диагностики. Чаще всего срок их жизни сокращает некачественное топливо.

У обоих видов кислородных датчиков волнообразный выходной сигнал. У триггерного это колебания напряжения, а у широкополосного — направление тока: от положительного до отрицательного. Помимо не очень заметных различий в сигналах рабочего и неисправного датчиков бывают и явные. К примеру, зависание показаний на постоянном уровне вообще за границами измерений. Или позднее начало работы из-за неисправного подогрева. Последний проверяют простым прозваниванием его контактов на разрыв цепи. В основном неправильный сигнал можно увидеть на стоящей машине, к примеру поиграв оборотами двигателя. Но иногда не обойтись без дорожного теста. Дополнительно путем сравнения показаний переднего и заднего датчиков удается определить состояние нейтрализатора. Если сигналы обоих похожи, он неисправен. При его нормальной работе концентрация кислорода на выходе должна быть постоянно низкой, без перехода на бедную смесь и обратно, то есть без скачков сигнала.

ДВОЕ ИЗ ЛАРЦА

Все чаще для соблюдения жестких экологических норм в выхлопную систему встраивают второй трехкомпонентный нейтрализатор, уже без датчиков. Есть и более изощренный вариант, который воздействует на управление двигателем, — накопительный нейтрализатор. Служит он для дополнительного обезвреживания оксидов азота. Одна из таких систем стояла на 2-литровых моторах FSI концерна «Фольксваген».

Конструктивно накопительный нейтрализатор похож на трехкомпонентный, а по характеру работы напоминает дизельный сажевый фильтр. Дополнительно в активный слой нейтрализатора включен оксид бария, способный удерживать NO х и серу при температуре от 250 до 500 ºC. По мере его насыщения начинается двухэтапный процесс регенерации. На первом этапе двигатель переходит на обогащенные смеси, при этом повышается и температура ОГ. В таких условиях NO х распадаются и преобразуются в безвредный азот. Для выжигания серы нужна еще более высокая температура ОГ, свыше 650 ºC. Этот этап начинается при сильном сокращении интервалов регенерации NO х. Для этого двигатель переходит на еще более богатую смесь с поздним зажиганием.

В систему включены датчик температуры ОГ перед нейтрализатором, а после него — датчик NO х со своим отдельным блоком управления. Первый нужен для контроля регенерации и защиты системы от перегрева. А датчик NO х используется для определения насыщения нейтрализатора. Работает он по принципу широкополосного кислородного датчика.

Накопительный нейтрализатор гораздо меньше вмешивается в работу двигателя, чем дизельный сажевый фильтр. Конечно же, как и все виды нейтрализаторов, он рано или поздно забивается. Продлить ему жизнь может качественное топливо с низким содержанием серы и периодическая езда на больших оборотах двигателя под нагрузкой.

Экология, безусловно, важна. Но цена соблюдения ее требований очень высока. Слишком уж сильно зависит управление двигателем от работы систем нейтрализации. А судя по напору экологов, дальше станет еще труднее.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию