Что такое детонация в автомобильном двигателе
Как вылечить детонацию двигателя при выключении зажигания?
В любом автомобильном двигателе возникает детонация. Опытные водители знакомы с этим явлением, но не все знают как её убрать. Эта статья раскрывает причины возникновения и предлагает способы устранения детонации двигателя после выключения зажигания.
Детонация изнутри и почему она опасна
Детонация возникает при неправильном распределении воздушно-топливной смеси внутри цилиндра двигателя. В камере сгорания происходит взрыв. Процесс начинается при движении поршня к верхней мёртвой точке. При этом поршневая силового агрегата испытывает сильную нагрузку. Детонация двигателя при глушении способна разрушить поршень и стенки цилиндра.
При оптимальной работе силового агрегата после воспламенения смеси воздух-бензин возникает ударная волна. Она двигается со скоростью 20-30 м/с. При детонации скорость увеличивается в сотни раз. Взрывная волна распространяется в цилиндре со скоростью более 2000 метров в секунду. Не стоит путать с эффектом, когда двигатель троит.
При детонации возникает неконтролируемый процесс воспламенения горючей смеси. Мощная ударная волна распространяется по камере сгорания и способна разрушить поршневую двигателя.
Детонация сопровождается звонким металлическим звуком. Под воздействием ударной волны возникает вибрация стенок цилиндра. Они издают звук.
Детонация в цилиндрах на холостом ходу происходит в результате сильного нагревания деталей. После глушения коленчатый вал не останавливается мгновенно. Он продолжает движение. В камеру попадает топливо и воздух. Смесь успевает нагреться до критической температуры и самопроизвольно воспламеняется.
Для силового агрегата детонация – это разрушительный процесс. Поэтому надо определить первопричину возникновения и как можно быстрее её устранить.
Источники возникновения детонации двигателя внутреннего сгорания
Неправильное воспламенение горючей смеси в моторных цилиндрах является следствием нескольких факторов. Каждый из них относительный. Не существует каких-либо абсолютных параметров, которые с 100% вероятностью обеспечивают невозможность этого явления.
3 основные причины детонации
Первая причина связана с топливом. Его плохое качество или слишком низкое октановое число вызывает ряд проблем. Некоторые из них:
- повышение рабочей температуры силового агрегата;
- высокое давление в цилиндрах.
Заправка бензином с октановым числом ниже, чем рекомендует производитель, — источник возникновения детонации при остановке двигателя. Чем выше октановое число, тем устойчивее бензин к взрывному возгоранию. Поэтому современные силовые агрегаты нуждаются в дорогом топливе.
Заправка некачественным бензином – одна из причин появления детонации при глушении двигателя.
Плохой бензин часто приводит к преждевременному возгоранию. Горючая смесь воспламеняется в двух случаях: от свечи зажигания или от неправильной степени сжатия. Баланс между двумя способами очень тонкий. Разрушить это равновесие способен любой фактор. При низкой компрессии в моторе топливо полностью не сгорает. Остатки оседают на стенках цилиндра и поршня в виде нагара и копоти.
При низкой компрессии в цилиндрах топливо не сгорает полностью, образовывается нагар. Он оседает на стенки камеры сгорания, уменьшая её объём.
Нагар на внутренней стороне камеры сгорания – это вторая причина детонации двигателя после отключения зажигания. Отложения внутри мотора уменьшают объём цилиндра. Поэтому увеличивается сжатие смеси воздух-бензин. Это приводит к возникновению разрушительной детонации двигателя внутреннего сгорания.
Детонация в карбюраторном двигателе
Часть рабочей смеси, до которой фронт пламени доходит в последнюю очередь нагревается в результате роста давления со стороны фронта пламени. При достижении температуры самовоспламенения очаги горения в этих зонах, тем не менее, не возникают из-за местного недостатка кислорода и времени протекания первой фазы сгорания, продолжительное протекание которой характерно для пререферийных зон.
Однако несгоревшая смесь в этих зонах чрезвычайно активизируется и оказывается на границе теплового взрыва. Любое местное повышение давления и температуры вызывает самовоспламенение этой части заряда, которое носит взрывной характер.
Ударные волны со стороны таких очагов самовоспламенения вызывают в свою очередь самовоспламенение хорошо подготовленной к этому смеси. Это вызывает еше большее повышение давления, под действием которого фронт пламени принудительно ускоряется. Скорость его может превысить скорость звука и достичь 1500—2300 м/с, что характерно для взрывного горения.
Сгорание в цилиндрах двигателя с искровым зажиганием последних порций заряда после его объемного самовоспламенения, сопровождающееся возникновением ударных волн, называется детонационным.
При отражении ударных волн от стенок камеры сгорания возникает звонкий металлический стук, который является внешним проявлением детонации.
На индикаторных диаграммах на возникновение детонации указывает колебание давления.
Рис. Индикаторная диаграмма работы карбюраторного двигателя при детонационном сгорании
При сильной детонации мощность двигателя падает, растет расход топлива, в отработавших газах появляется черный дым. Ударные волны разрушают масляную пленку на поверхности верхней части цилиндра, что приводит к его интенсивному износу. В дальнейшем могут обгореть кромки поршней, электроды свечей зажигания, прокладки головки блока цилиндров, произойти выкрашивание антифрикционного сплава в подшипниках коленчатого вала и иные разрушения деталей кривошипно-шатунного механизма (КШМ) Таким образом, детонационное сгорание отрицательно влияет на рабочий процесс и долговечность деталей КШМ.
Возникновению детонации способствуют следующие факторы:
- Сорт топлива — характеризуется октановым числом, который оценивает антидетонационную стойкость бензина. Чем выше октановое число, тем выше антидетонационные свойства топлива. Октановое число легких фракций бензина меньше, чем у средних и тяжелых фракций. При быстром открытии дроссельной заслонки (например, при интенсивном разгоне) тяжелые фракции поступают в цилиндр с некоторой задержкой, что приводит к детонации в начале разгона из-за временного снижения октанового числа топлива, поступившего в цилиндр. Октановое число автомобильных бензинов (ГОСТ 2084 -77) составляет от 76 до 98 единиц.
- Частота вращения коленчатого вала. Увеличение частоты вращения коленчатого вала приводит к росту турбулизации заряда, что влечет за собой увеличение скорости распространения пламени. В результате времени на развитие предпламенных процессов в последних частях заряда становится недостаточно, и детонация снижается. Кроме тою, с увеличением частоты вращения коленчатого вала увеличивается содержание остаточных тазов в рабочей смеси, что также снижает интенсивность предпламенных процессов и приводит к снижению детонации.
- Нагрузка. Уменьшение нагрузки сопровождается прикрытием дроссельной заслонки карбюратора, вследствие чего давление и температура заряда в конце процесса сжатия снижается, а коэффициент остаточных газов уг увеличивается. Кроме этого уменьшается количество вводимого рабочею тела, а значит и выделяемая теплота, вследствие чего снижается давление в цилиндре. Поэтому уменьшение нагрузки приводит к снижению детонации и наоборот.
- Угол опережения зажигания. Увеличение угла опережения зажигания приводит к более раннему тепловыделению относительно прихода поршня в ВМТ. В результате резко повышается давление, что способствует возрастанию степени сжатия смеси перед фронтом пламени и вызывает появление очагов самовоспламенения. Поэтому с увеличением угла опережения склонность к детонации возрастает и наоборот.
- Тепловое состояние двигателя. С ростом температуры деталей камеры сгорания увеличивается вероятность возникновения очагов самовоспламенения и детонации.
- Температура и давление воздуха на впуске в цилиндр. Увеличение температуры и давления окружающей среды усиливает вероятность детонации. Поэтому применение наддува в двигателях с принудительным воспламенением затруднительно.
- Степень сжатия. Увеличение степени сжатия Е приводит к увеличению температуры и давления в конце процесса сжатия. Следовательно, увеличение Е ограничивается и ее максимально допустимое значение выбирается в зависимости от сорта топлива, формы камеры сгорания, материала поршня, головки блока цилиндров, быстроходности двигателя и способа его охлаждения.
- Форма и размеры камеры сгорания. Двигатели с формой камеры сгорания, обеспечивающей наибольшую турбулизацию смеси, более защищены от детонации. С этой точки зрения наиболее рациональными являются камеры сгорания в поршне или клиновые и плоскоовальные камеры с вытеснителями. Уменьшение пути пламени от свечи до периферийных зон камеры сгорания сокращает время его распространения и тем самым снижает вероятность возникновения детонации. Следовательно, детонацию ограничивает применение двух свечей зажигания вместо одной и уменьшение диаметра цилиндра.
- Материал поршня и головки блока цилиндров. Материал этих деталей во многом определяет теплоотвод от рабочею тела. Применение алюминиевых сплавов, обладающих высокой теплопроводностью, позволяет снизить требования к октановому числу бензина на 5—7 единиц.
Не следует путать детонационное сгорание с преждевременным самовоспламенением, которое может произойти во время процесса сжатия еще до момента появления искры в результате разогрева oт горячей поверхности центрального электрода свечи зажигания, головки выпускного клапана или нагара. Такое воспламенение носит название калильного зажигания.
Воспламенившаяся от накаленных поверхностей рабочая смесь затем сгорает с нормальной скоростью, однако, момент самовоспламенения неуправляем и со временем наступает все раньше и раньше. При этом давление и температура достигают своего максимума задолго до прихода поршня в ВМТ, что приводит к уменьшению мощности двигателя и его перегреву. Устранить это явление выключением зажигания нельзя, поэтому в таких случаях необходимо просто прекратить подачу горючей смеси.
В некоторых случаях аналогично калильному зажиганию возникает воспламенение топлива, но от сжатия — явление дизилинга. Такое воспламенение наблюдается при выключении зажигания, когда прогретый карбюраторный двигатель не останавливается и продолжает работать с пониженной частотой вращения коленчатого вала, большой нестабильностью и вибрациями. Это явление имеет место при Е > 8,5. Для его устранения применяют автоматическое перекрытие в карбюраторе канала холостого хода при выключении зажигания.
Бензин как причина поломки
Без сомнений, некачественное топливо – одна из самых часто встречающихся причин поломки автомобильного двигателя. Но при этом и одна из самых сложных для выявления. Так, с одной стороны, кажется, что «выловить» такую причину и принять меры «по недопущению» совсем нетрудно. Но с другой стороны, поскольку это часто встречающаяся проблема, то на некачественное топливо нередко пытаются «списать» почти все поломки и неисправности мотора. Что превращает эту проблему в источник большого числа спекуляций.
Ни для кого не секрет, что у нас в стране бензин не везде и не всегда «правильный». Поэтому после проведения анализа топлива при экспертизе неисправности двигателя нередко выясняется, что в бензине есть отклонения некоторых параметров от предписываемых стандартами значений. В таких случаях многие эксперты с криками «Эврика!» спешат объявить виновником плохое топливо. И даже пытаются подвести под свои выводы некую наукообразную теоретическую базу. Хотя самая примитивная логика говорит: да, действительно, у топлива есть какие-то минимальные отклонения – в каком-то знаке после запятой. Но все они не имеют никакого отношения к данной поломке.
То есть топливо бывает с отклонениями, и часто – но на нем среднестатистический двигатель может прекрасно работать. Простейшим подтверждением чему служат тысячи и тысячи автомобилей вокруг, включая и сотни тех, которые были заправлены тем же самым «неправильным» топливом – скорее всего, ни один из них не сломался, в противном случае большинство топливных компаний давно бы разорились.
Другое дело, когда топливо-то в баке отличное, а вот двигатель взял и сломался… Тогда ищи не ищи лишнюю молекулу, а если ее нет, то причину нахрапом не взять – тут думать надо…
Дело «мастера» боится?
Причин у любой поломки двигателя может быть много – и в том числе из-за топлива. Только, к примеру, не того, которое в баке сейчас, а того, что было залито давно. Когда прошло несколько заправок качественным бензином, и машина проехала сотни, а то и тысячи километров, «плохой» бензин из бака уже выработался. Но для двигателя полученной когда-то порции «бензинового зелья» вполне могло хватить, чтобы через многие километры вдруг взять и «умереть» в одночасье.
Очевидно, связать некачественное топливо и поломку в таком случае очень сложно. А может ли топливо вообще привести к таким последствиям? И как оно должно при этом сгорать, чтобы так повредить поршень? Тут у исследователей причин повреждения полет фантазии становится поистине безграничным. Иногда кажется, что «бред сивого мерина в лунную ночь» при сравнении с некоторыми их заключениями – просто скучная истина. Потому что «заморачиваться» серьезным исследованием причин и последствий поломки обычно никто не хочет – сложно, долго, а потому дорого. И если возникает какая-то непонятная ситуация, то обычно говорят: «Все понятно! Это некачественный бензин!».
Детонация вызывает развитие ударной волны в цилиндре — именно ее и слышит водитель. Или не слышит…
Поразительно, но настоящие «мастера своего дела» могут назначить бензин виновником поломки вообще без каких-либо исследований – на то они и «мастера». Например, если бензин долго хранился в неисправном автомобиле, то параметры его изменились, и исследование бессмысленно, так так невозможно установить, что было в баке на момент поломки. Вот и хорошо – значит, бензин был некачественный! Или наоборот, будем исследовать бензин в баке через добрую пару лет хранения автомобиля после поломки и, найдя повышенное содержание смол (а как ему не быть повышенным – при таком длительном хранении?), не моргнув глазом назначим его же виновником. В зависимости от мастерства и фантазии. Все же и так понятно…
Хотя на самом деле – ничего не понятно. Но «списывается» все на топливо, поскольку сложности мало кому интересны.
Действительно, огромное количество повреждений и поломок двигателя никакого отношения к топливу не имеют. Оно просто не может создать именно такие поломки именно в этом месте данной детали – как говорят в таких случаях, признаки поломки противоречат предполагаемой причине. Но для некоторых «специалистов» это – не факт. Коленвал сломался? Топливо виновато, шибко горело! Вкладыш коленвала провернулся? Опять же оно, родимое – знаем-знаем, там же детонацией «настучало»!
Собственно, для того чтобы «отделить зерна от плевел», и стоит рассмотреть основные ситуации, когда топливо (а сегодня мы говорим только о бензине) может повредить двигатель, а когда не может. И что оно может действительно повредить.
Эта ужасная детонация
Самый распространенный на практике случай: залитый на АЗС бензин имел низкое октановое число и вызвал в двигателе детонацию.
Детонация – вроде бы известный, но на самом деле сложный в физическом смысле процесс. Попробуем в нем разобраться, чтобы понять его опасность и последствия.
Итак, при движении поршня к верхней мертвой точке за счет роста давления в объеме цилиндра растет и температура смеси. Плюс к этому идет подогрев смеси от горячих стенок цилиндра. В этот момент срабатывает свеча – начинает распространяться фронт пламени, температура и давление в цилиндре быстро возрастают. Однако при нагреве в процессе сжатия может оказаться, что на периферии цилиндра, в районе пристеночных слоев, температура смеси оказывается слишком высока – выше, чем температура самовоспламенения топлива.
В результате почти одновременно со «штатным» и сравнительно медленным сгоранием, обусловленным нормальным распространением фронта пламени от свечи зажигания, происходит взрыв перегретой смеси в наиболее удаленной от свечи зажигания зоне. Этот взрыв имеет объемный характер и инициирует распространение ударной волны навстречу фронту пламени, что в свою очередь вызывает воспламенение смеси при повышении давления и температуры во фронте ударной волны. Далее, проходя по камере сгорания, ударная волна несколько раз отражается от стенок цилиндра, что и вызывает тот самый приметный стук в цилиндре.
А вот и «классика» детонации — рухнувшие перемычки на поршне
Но самое главное, ударная волна, действуя вместе со своими отраженными волнами, резко увеличивает нагрузку на детали двигателя, создавая в них нерасчетные дополнительные нагрузки – в основном на поршень (на его края), на поршневые кольца и перемычки между ними. А поскольку в этих местах (между первым и вторым кольцами) сечения сравнительно тонкие, именно там чаще всего и происходит поломка.
Но сама поломка от детонации отличается своей собственной «хитростью». Для того чтобы что-то сломалось, усилия от одиночного взрыва смеси не хватит – таких взрывов потребуются десятки и сотни тысяч. За это время произойдет накопление дефектов в микроструктуре материала, образование и развитие усталостной трещины и, наконец, усталостная поломка как финальный аккорд длинного (сотни и тысячи километров пробега) процесса разрушения. Вследствие такой большой продолжительности и будет разорвана во времени прямая связь между причиной (топливо, вызвавшее детонацию) и последствиями (поломка), сильно осложнив жизнь «мастерам»-экспертам.
Если же поломка поршня в результате воздействия детонации не произошла (такое встречается), то это совсем не значит, что повезло – детонационные взрывы на периферии камеры могут здорово перегреть поверхность поршня на краях вплоть до плавления и выгорания там металла.
Без детонации – никак?
Но если для поломки от детонации требуются десятки или даже сотни тысяч ударов и оборотов коленвала, то вполне очевидно, что пара-тройка одиночных ударов никак не смогут повредить поршень. То есть детонация – это не кувалда, которая ломает двигатель с одного удара. Ломает его количество ударов. Тогда надо понимать, что детонация – это никакая не «чума» для двигателя внутреннего сгорания, в чем совершенно убеждены наши «мастера»-эксперты, а вполне нормальный рабочий процесс. Важно только правильно им управлять.
Сказано – сделано. Именно так, «по детонации», и работает система управления двигателем. Как это происходит? При появлении детонации характерный стук регистрируется датчиком детонации – и происходит автоматическая регулировка угла опережения зажигания, длительности импульса на форсунку и другие действия, чтобы на следующем обороте коленвала «убрать» этот нежелательный для двигателя эффект.
Вот и получается, что наличие детонации является не вредным и фатальным, а напротив, совершенно необходимым условием работы системы управления современным двигателем. Разумеется, если это делается правильно. Более того, если детонация исчезает, то система управления просто «слепнет», не понимая, что ей делать. И начинает двигать угол опережения на более раннее зажигание – до тех пор пока детонация не появится или не сработают какие-то другие программные ограничения.
То есть сама по себе детонация не является причиной поломки, поскольку нормальный двигатель рассчитан на ее появление. Скажем больше – в нормально работающем двигателе она просто должна быть. И точка.
так выгладит не вполне характерный пример разрушения поршня в результате детонации — каверны буквально «съели» металл на краях
Но что происходит, если в бак залить низкооктановый бензин? Сразу появляется детонация? Ничего, это – вполне нормальное явление, и система управления начинает в штатном режиме уменьшать угол опережения зажигания. Но через несколько оборотов коленвала угол становится «на упор»: уменьшить его уже нельзя, поскольку программных возможностей нет. А детонация остается – и вот это является опасным режимом работы двигателя. Который даже фиксируется в памяти блока управления – там записывается соответствующий код ошибки.
Возможно, кто-то услышит эту детонацию. А возможно, и не услышит: сегодня звукоизоляция автомобилей находится на довольно высоком уровне. И вот здесь кроется вся сложность и опасность ситуации: например, водитель приглушил музыку в салоне, услышал стук – и принял меры. Но оказалось, что уже поздно: усталость металла сделала свое «черное дело», и какой-то из поршней уже сломан. Причем до момента наступления поломки ничто, как говорится, «не предвещало»…
Иногда на краях поршня, там, где и возникают детонационные взрывы, может появиться эрозия – и поверхность будет буквально «изъедена» кавернами. Такой эффект наблюдается чаще на турбированных двигателях. На «атмосферниках» эрозия не успевает проявиться: раньше рушатся перемычки колец, двигатель теряет компрессию, резко возрастает расход масла, и эксплуатацию такого двигателя прекращают, потому что он уже явно неисправен.
Некоторые «мастера»-эксперты убеждены: детонация настолько зла, что рушит все подряд, даже свечи зажигания. Аргумент, надо сказать, «так себе» – как бедной свече повредиться, если детонация возникает в самом дальнем «углу» камеры, наиболее удаленном от свечи? И нужны уникальные условия, чтобы такое повреждение все-таки произошло…
Та же история и с клапанами: во время возникновения детонации они закрыты и, как говорится, «и в ус себе не дуют», лежат спокойно в седле. Конечно, если они не герметичны, то их может «пристукнуть» и даже «прижечь», но в ином случае им ничего такого явно «детонационного» не грозит.
Вкладыши коленвала, конечно, тоже испытывают некие удары от детонации, однако она «бьет» через большое количество деталей: поршень, палец, шатун. И чтобы повредить вкладыш, необходим удар такой зубодробительной силы, который впору сравнить с ударом кувалды даже не по, а через наковальню – такой разрушил бы всю шатунно-поршневую группу, прежде чем смог бы достать до вкладыша. Возможен ли такой удар на практике, предоставим решить читателю самостоятельно в качестве «домашнего задания».
«Чума» XXI века – масляная?
Как известно, при работе двигателя попадание топлива в масло совершенно неизбежно. И ничего удивительного в этом нет: когда топливо-воздушная смесь впрыскивается во впускной коллектор (в двигателе с распределенным впрыском) или попадает сразу в цилиндры (в двигателе с непосредственным впрыском), то часть неиспаренного топлива в виде небольшого количества мелких капель неизбежно останется на стенках цилиндра. А поскольку цилиндры имеют не идеальную зеркальную поверхность, а заданную шероховатость с рисками (так называемый «хон»), то кольца при движении поршня вверх пропустят мимо себя часть топлива – и на последующем ходе поршня вниз оно теми же кольцами будет сброшено в картер.
Этот процесс может развиваться крайне быстро: при скорости 60 км/ч всего 1 км пробега за 1 мин – и 3000 оборотов двигатель сделал. А допустим, автомобиль проехал 100 км, тогда двигатель совершил уже 300 тыс. оборотов! И если за один оборот коленвала в картер попадают (в виде капель, паров) какие-то доли миллиграмма топлива, то после такой не слишком длительной эксплуатации разговор может идти уже о граммах и даже килограммах…
Разрушение поршневых колец — еще один явный признак низкого качества топлива
И все бы ничего, поскольку бензин быстро испаряется и выходит из картера через систему вентиляции туда, куда ему и положено – обратно во впускную систему и цилиндры двигателя. Если бы не одно «но» – взаимодействие топлива с моторным маслом при определенных условиях может запустить целую цепочку «нештатных» химических реакций и оказаться для этого масла фатальным. То есть попадание топлива в масло может в конечном счете привести к поломке двигателя. Почему?
В течение многих лет эффект очевидного и неизбежного попадания топлива в масло не вызывал никаких проблем. Однако в последние годы с повышением степени сжатия в цилиндрах современных двигателей и изменением рецептуры масел появилась проблема, которая напрямую связана с качеством бензина и его взаимодействием с моторными маслами. Это критическое изменение свойств моторного масла вплоть до загустевания масла и превращения в мазеобразную, иногда практически резиновую, субстанцию, быстро получило в народе заслуженное прозвище – масляная «чума».
…Однако более подробно об этой проблеме мы здесь говорить не будем – о ней можно прочитать, перевернув еще одну страницу.
- Александр Хрулев, канд. техн. наук, директор фирмы «АБ-Инжиниринг»
Что такое компрессия, детонация двигателя и на что она влияет
Увеличение коэффициента полезного действия (КПД) автомобильного двигателя весьма полезно с точки зрения его экономичности, но практически всегда заводит инженеров в конструкционный тупик. Так произошло и при попытках увеличения степени сжатия в цилиндрах. Бесконечно уменьшать объём камеры сгорания невозможно, ограничения накладывает применяемое топливо.
Что такое компрессия
Компрессия измеряется в единицах давления и представляет собой пиковое его значение в цилиндре при быстром подводе поршня к верхней мёртвой точке (ВМТ) в конце такта сжатия, когда клапаны закрыты, а утечкой через кольца можно пренебречь за счёт скорости процесса.
В отличие от степени сжатия, которая выражается в отношении рабочего объёма цилиндра к пространству камеры сгорания и является величиной безразмерной, не зависящей от технического состояния мотора, компрессия двигателя может меняться и зависеть от множества условий.
Поэтому именно она представляет большой интерес для оценки текущего положения дел в двигателе. Ведь горение смеси происходит не в абстрактном цилиндре нового мотора, а во вполне конкретных условиях, иногда далёких от идеала.
Чем отличается компрессия в дизельных и бензиновых ДВС
В дизельном моторе воспламенение смеси происходит за счёт тепла, выделяемого воздухом при его быстром и значительном сжатии. Температура поднимается настолько, что при впрыске даже тяжёлого дизтоплива в этот раскалённый газ оно мгновенно и надёжно загорается во всём объёме.
Бензиновый мотор работает иначе. Смесь подготавливается заранее, независимо от того, происходит ли это в цилиндре (так называемый прямой впрыск бензина) или ещё во впускном коллекторе, по ту сторону от клапана.
При нормальной работе воспламеняться самопроизвольно она не должна, поджигание происходит от электрической искры в свече зажигания. И не во всём объёме сразу, а только в ограниченной области искрового промежутка, откуда дальше и распространяется фронт пламени, поджигающий всю оставшуюся смесь.
Отсюда и различия в уровне компрессии. Если не брать в расчёт новейшие разработки ещё не пошедших в серию двигателей, то компрессия в дизелях значительно больше, примерно вдвое от бензиновых аналогов.
Точные цифры привести невозможно, поскольку моторных технологий масса, а с появлением турбированных двигателей с большим избыточным давлением на впуске ситуация вообще сильно изменилась. Остался только общий принцип – при прочих равных условиях компрессия в дизеле должна быть выше, а ограничения в её росте существуют в обоих случаях.
Как проверить компрессию в цилиндрах
По определению понятия компрессии можно догадаться, как её измерить. Предварительно ДВС прогревается до высокой температуры 70-90 градусов.
Из цилиндра выворачивается свеча, а вместо неё вставляется наконечник жёсткого или гибкого армированного шланга, заканчивающегося манометром с подходящим пределом измерения давления.
После чего выполняется несколько процедур:
- отключается топливный насос, для чего достаточно вынуть соответствующий предохранитель;
- блокируется подача искры и топлива в цилиндры, например, снять разъёмы с модулей зажигания и форсунок;
- наконечник шланга плотно фиксируется для предотвращения утечек, полностью нажимается педаль газа для освобождения пути воздуха на впуск, после чего включается стартёр;
- как только показания манометра прекращают расти, данное финишное значение давления запоминается или записывается, это и будет означать компрессию в данном цилиндре.
Для каждого двигателя существует свой допустимый диапазон значения компрессии, зависящий от его конструкционной геометрической степени сжатия.
Среднее значение давление в бензиновом моторе составляет в районе — 10 кг/см² (в дизельном ДВС — 20 кг/см²).
Практический смысл имеет также разбег показаний между цилиндрами, поскольку все одновременно выходят из строя довольно редко.
Упомянутые выше утечки через кольца по мере износа начинают играть всё большую роль. Обычно компрессия уменьшается со временем, но случаются парадоксальные случаи так называемой масляной компрессии.
Масло поступает в цилиндр в таком количестве, что полностью заливает кольца, и компрессия может даже превысить показания нового мотора.
Что представляет собой детонация
В нормальном режиме смесь в бензомоторах горит достаточно медленно, и фронт пламени от свечи распространяется с небольшой скоростью порядка 50 м/с.
Однако при выполнении ряда условий эта скорость резко возрастает:
- низкое качество антидетонационных свойств бензина, характеризуемых его октановым числом;
- самовоспламенение по дизельному типу задолго до ВМТ;
- высокая температура в цилиндре;
- возникновение дополнительных нагретых очагов в камере сгорания;
- неконтролируемое увеличение степени сжатия, например, при сильном нагаре;
- низкие обороты при большой нагрузке;
- слишком бедная, быстро сгорающая смесь.
Физическими свойствами детонации становятся быстрое, взрывное горение и распространение волны со скоростью звука. Причём эта скорость в условиях высокого давления и температуры значительно превышает её в нормальной обстановке.
Причины возникновения
Условия проявления детонации вызваны неисправностями мотора или пренебрежением к правилам его эксплуатации:
- заправка некондиционным или неподходящим для данного мотора топливом;
- перегрев двигателя;
- езда на повышенных передачах с малыми оборотами и значительным нажатием на педаль акселератора;
- установка слишком раннего зажигания на двигателях, где оно регулируется;
- нагар в камере сгорания;
- неисправность датчика детонации, не вызывающая выявления его ошибки со стороны блока управления;
- чрезмерное обеднение смеси.
Полностью исправный двигатель, снабжённый электронной системой впрыска и заправленный положенным по инструкции горючим, не детонирует.
Признаки детонирования
Самое частое упоминание о детонации – это знаменитая фраза «пальцы стучат». Разумеется, никакие пальцы там не стучат, а характерный звук возникает от ударов волны с большой скоростью о днище поршня.
При сбросе газа, а также при равномерном движении на больших оборотах звон пропадает, хотя в особо тяжёлых случаях мотор может звенеть постоянно, что очень опасно для него, тем более, что при раскрутке звон плохо различим.
Последствия процесса
Разница между нормальным процессом и детонацией примерно такая же, как между горением артиллерийского пороха и взрывом бризантных веществ.
Первое выталкивает снаряд, а второе разрушает его вместе со стволом пушки. Примерно то же возникает и в цилиндрах двигателя.
Разваливаются и прогорают поршни, сокрушаются перегородки между кольцами, перегревается и искривляется головка блока. Ездить с детонацией категорически недопустимо.
Меры устранения и профилактика
Всё сводится к соблюдению простейших правил:
- заправляться только проверенным бензином с заданным октановым числом;
- вовремя менять масло, не дожидаясь отложений нагара;
- следить за состоянием системы управления двигателем, проводя полную диагностику после появления сигналов об ошибках;
- не допускать перегревов;
- не ездить под нагрузкой на чрезмерно малых оборотах;
- при увеличении расхода масла двигателем проверять компрессию и не откладывая принимать решение о ремонте мотора.
Актуальность борьбы с детонацией резко уменьшилась после прощания с карбюраторными моторами и повышением общей культуры обслуживания автомобилей.
Но знать об этом явлении нужно, тем более, что запас прочности у новых двигателей значительно меньше, чем был во времена постоянно «звенящих» от детонации моторов старых «Москвичей» и любителей ездить на «Жигулях», заливая «76й» бензин.
Особенно быстро детонация убьёт турбомотор, где и так конструкторы вынуждены снижать степень сжатия из-за высокого начального давления на впуске.