Что такое безинерционный двигатель - Авто журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое безинерционный двигатель

Тест: влияние микрошагового режима на крутящий момент шагового двигателя.

В некоторых математических моделях шагового двигателя предполагается, что при использовании микрошагового режима крутящий момент значительно ниже, чем при использовании полного шага или полушага. Обоснованием данного утверждения является прежде всего то, что при полном шаге на обмотки от начала до конца подается полное напряжение питания, что должно вызвать соответствующее изменение тока в обмотках, тогда как в микрошаговом режиме драйвер регулирует подачу тока таким образом, чтобы график его был близок к синусоиде. В результате энергия, поданная в обмотки в полном шаге, должна превышать энергию микрошага примерно на квадратный корень из 2, т.е. примерно 40%, что должно вызвать соответствующее увеличение крутящего момента двигателя. Однако, в противоположность чистой теории на практике многие отмечают, что микрошаговый режим — напротив, увеличивает крутящий момент, позволяет увеличить скорости и ускорения станка с ЧПУ. Скорее всего, дело в том, что математическая модель расчета момента ШД, основанная на учете чисто энергии обмоток — несовершенна, и не учитывает множества паразитных механических и электромагнитных процессов, происходящих при движении ротора шагового двигателя, в результате которых далеко не вся энергия, подаваемая в обмотки трансформируется в кинетическую энергию ротора. В результате вибраций и резонансных явлений большая часть энергии расходуется впустую.

Для точной проверки данного положения был поставлен эксперимент по влиянию микрошага на крутящий момент шагового двигателя. Было использовано следующее оборудование:

  1. Стенд для измерения момента, состоящий из тензодатчика, контроллера с индикацией момента, и электромагнитного тормоза. Разрешение контроллера — 0.001 Нм, для нивелирования погрешности будем выполнять несколько замеров. Электромагнитный тормоз — безинерционный, т.е. в любой момент времени выдает одинаковое усилие на валу.
  2. Шаговый двигатель ST57-100, ток 4.2 А, момент 2.1 Нм
  3. Драйвер Yako YKC2608M-H. Режимы деления шага для тестирования — 1/2(минимально возможное для драйвера) и 1/20.
  4. Источник питания S-350-48, выходное напряжение установлено в 45 В.
  5. Генератор прямоугольных импульсов

Методика тестирования: двигатель с нагрузкой 0.2 Нм разгоняется до скорости тестирования, затем момент на валу плавно увеличивается до срыва или пропуска шагов. В каждом режиме производилось по 7 замеров, дисперсия для каждой выборки не превышает 0.002, поэтому в таблицах приводятся только средние значения как вполне отражающие всю выборку.

Сперва двигатель был протестирован на 4 скоростных режимах — 30 об/мин, 100, 300 и 600,

Момент двигателя ST57-100 при вращении драйвером YKC2608M-H при напряжении 45 В, ток 3.14 А.

Микрошагскорость
30 об/мин
100 об/мин300 об/мин600 об/мин
1/2
1.6610.8031.6331.225
1/201.6381.6351.6331.224

Как видно из таблицы, микрошаг не оказывает никакого негативного влияния на крутящий момент, а в резонансной области мотора(около 100 об/мин) — наоборот, увеличивает его вдвое, или если быть точным, не дает ему упасть на эту величину.

Также можно видеть, что момент двигателя не дотягивает до паспортных 2.1 Нм идолго сохраняет свое значение с увеличением оборотов. Это следствие заниженного тока фазы — если обратить внимание заголовок таблицы, ток фазы выбран 3.14 вместо паспортного 4.2 А. Увеличим ток до 4.28 А и повторим тесты, проведя дополнительные замеры на более высокой скорости — 1050 об/мин . В конце концов, именно на высоких скоростях возникают проблемы с крутящим моментом(некруглое число выбрано для удобства установки частоты на генераторе импульсов).

Момент двигателя ST57-100 при вращении драйвером YKC2608M-H при напряжении 45 В, ток 4.28 А.

И опять замеры однозначно показывают, что если высокое деление шага и влияет на крутящий момент, то исключительно положительным образом. Причем влияние немного растет вместе со скоростью вращения. В последней строке указан «контрольный замер», сделанный на одном из лучших драйверов в своем классе — Leadshine EM705. На нем был выбран ток фазы 4.2 А, деление шага 1/20 и выполнена быстрая подстройка драйвера под двигатель с пом. переключателя SW4. Вопреки ожиданиям, этот прекрасный драйвер, выигрывая по эстетическим характеристикам движения(шум, вибрации, плавность) — несколько уступил по крутящему моменту драйверу от Yako. Возможно, в будущем мы проведем более подробные сравнительные исследования моментных и скоростных характеристик драйверов разных брендов.

Читать еще:  Чем накрывают двигатель зимой

Примеры декларирования ТН ВЭД ЕАЭС, определение кода ТНВЭД

Коды ТН ВЭД, заменямые с 01.09.2015

Таблица сравнения экспортных ставок, действующих по 31.08.15 с вступающими в силу с 01.09.15

Поиск по списку товаров, прошедших таможенное оформление (более 700 000 примеров декларирования).

Для получения более подробной и актуальной информации, включая реальные цены, используйте информационный модуль «Среднеконтрактные цены» и таможенный калькулятор «Тамплат PRO+».

Примеры декларирования на сайте носят исключительно информационный характер и не могут служить основанием для принятия решения о классификации товара.

  • 9401901000 — ПРИВЯЗНОЙ РЕМЕНЬ (РЕМЕНЬ БЕЗОПАСНОСТИ ПЛЕЧЕВОЙ). РЕМЕНЬ ИЗГОТОВЛЕН ИЗ СИНТЕТИЧЕСКИХ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ, В СБОРЕ С ИНЕРЦИАЛЬНОЙ КАТУШКОЙ, СТАЛЬНЫМИ
  • 9503007500 — ДЕТСКАЯ ПЛАСТИКОВАЯ ИГРУШКА С ИНЕРЦИОННЫМ МЕХАНИЗМОМ БЕЗ ЭФФЕКТОВ: ВЕРТОЛЕТ. АРТ. 214/480 ШТ./2 КОР. САМОЛЕТ. АРТ. LL3699-1/720 ШТ./2 КОР. АРТ. 213/3
  • 8536101000 — СЛАБОТОЧНЫЙ ПЛАВКИЙ ПРЕДОХРАНИТЕЛЬ БЕЗИНЕРЦИОННЫЙ НА НАПРЯЖЕНИЕ 230В, СИЛУ ТОКА 1.25А АРТ. 540614 — 21 ШТ; СЛАБОТОЧНЫЙ ПЛАВКИЙ ПРЕДОХРАНИТЕЛЬ ИНЕРЦИОН
  • 9503008500 — ИГРУШКИ, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ДЕТЕЙ ,МИНИ МОДЕЛИ АВТОМОБИЛЕЙ ЛИТЫЕ МЕТАЛЛИЧЕСКИЕ,БЕЗ ИНЕРЦИОННОГО ДВИГАТЕЛЯ: МАШИНКИ, ВСЕГО 29376 ЕД. :
  • 9014202009 — СИСТЕМЫ НАВИГАЦИОННЫЕ ИНЕРЦИАЛЬНЫЕ — ИНДИКАТОР ОТКЛОНЕНИЯ ПО КУРСУ И ГЛИССАДЕ (ТРАЕКТОРИЯ СНИЖЕНИЯ САМОЛЕТА) МОД. KI 207, П/Н 066-3034-06 — 1ШТ, С/Н 7
  • 9503007500 — ИГРУШКИ ДЕТСКИЕ ПЛАСТМАССОВЫЕ ДЛЯ РАЗВЛЕЧЕНИЙ, ИМЕЮЩИЕ ИНЕРЦИОННЫЙ ДВИГАТЕЛЬ: МАШИНКИ И КВАДРОЦИКЛЫ ИНЕРЦИОННЫЕ, ИГРУШКИ НЕ ДЛЯ РОЗНИЧНОЙ ПРОДАЖИ. ИГР
  • 9503008100 — ПЛАСТИКОВАЯ ИГРУШКА ДЛЯ ДЕТЕЙ СТАРШЕ ТРЕХ ЛЕТ, ИГРУШЕЧНОЕ ОРУЖИЕ, НЕ ПРЕДНАЗНАЧЕННОЕ ДЛЯ СТРЕЛЬБЫ СНАРЯДАМИ, С ИНЕРЦИОННО-ЗУБЧАТЫМ МЕХАНИЗМОМ, СО ЗВУК
  • 9503007500 — ИГРУШКИ,ИЗОБРАЖАЮЩИЕ ТРАНСПОРТ,В ТОМ ЧИСЛЕ ДЛЯ СБОРКИ ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ,ИНЕРЦИОННЫЕ,ЭЛЕКТРОМЕХАНИЧЕСКИЕ, ЭЛЕКТРОТЕХНИЧЕСКИЕ,С ПИТАНИЕМ ОТ ХИМИЧ
  • 9014202009 — БЛОК ИНЕРЦИАЛЬНОЙ (БУ) НАВИГАЦИОННОЙ СИСТЕМЫ САМОЛЕТА. ПРЕДСТАВЛЯЕТ СОБОЙ ЭЛЕКТРОННЫЙ БЛОК С НАБОРОМ ИНЕРЦИАЛЬНЫХ ДАТЧИКОВ (ГИРОСКОПОВ И АКСЕЛЕРОМЕТРО
  • 3403199000 — СМАЗКА ‘HHS DRYLUBE’ СУХАЯ, СТОЙКАЯ К ИНЕРЦИОННЫМ СИЛАМ, ДЛЯ СМАЗКИ БЫСТРОВРАЩАЮЩИХСЯ ЧАСТЕЙ. НА ОСНОВЕ СИНТЕТИЧЕСКОГО ВОСКА И НЕФТЯНОГО ДИСТИЛЛЯТА (М
  • 8516108000 — ВОДОНАГРЕВАТЕЛИ ЭЛЕКТРИЧЕСКИЕ ЕМКОСТНЫЕ (ИНЕРЦИОННЫЕ) МАРКИ ARISTON ХОЗЯЙСТВЕННО-БЫТОВОГО НАЗНАЧЕНИЯ
  • 9014202009 — АВИАГОРИЗОНТ АГБ-3К (2008 Г.В.): СИСТЕМА НАВИГАЦИОННАЯ ИНЕРЦИАЛЬНАЯ, ПРЕДНАЗНАЧЕНА ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ ВЕРТОЛЕТА В ПРОСТРАНСТВЕ ОТНОСИТЕЛЬНО ПЛО
  • 9014900000 — БЛОК (P/N 465020-03030316, S/N 001-5224)ОБРАБОТКИ ДАННЫХ ДЛЯ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ, ДЛЯ РЕМОНТА И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ВС А319/320/3
  • 9031803800 — ЭЛЕКТРОННЫЕ ИНЕРЦИАЛЬНЫЕ ДАТЧИКИ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ НА БАЗЕ ДАТЧИКА ХОЛЛА, ОПРЕДЕЛЯЮТ ПОЛОЖЕНИЕ ОБЪЕКТА, СОДЕРЖАТ ТРЕХОСЕВОЙ МАГНИТОМЕТР (ГРА
  • 8536109000 — ПРЕДОХРАНИТЕЛЬ ИП-200, ИНЕРЦИОННЫЙ, ПЛАВКИЙ, НА СИЛУ ТОКА 200А; ДЛЯ ЗАЩИТЫ БОРТОВЫХ СЕТЕЙ ВЕРТОЛЕТА ОТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ И БОЛЬШИХ ПЕРЕГРУЗОК
  • 9031200000 — СТЕНДЫ ИСПЫТАТЕЛЬНЫЕ TEST FIXTURE/ОДНООСЕВОЙ ИСПЫТАТЕЛЬНЫЙ СТЕНД ИСП. ДЛЯ ИСПЫТАНИЯ ИНЕРЦИАЛЬНЫХ СИСТЕМ (ЭЛЕКТРОННЫХ ПРИБОРОВ, ДАТЧИКОВ) ПУТЕМ ВОСПРОИ
  • 9503007900 — ИГРУШКИ ТРАНСПОРТНЫЕ МЕТАЛЛИЧЕСКИЕ, МЕХАНИЧЕСКИЕ АВТОБУС ИНЕРЦИОННЫЙ (12 ШТ В КОРОБКЕ)
  • 9503007900 — ИГРУШКИ ДЕТСКИЕ МЕТАЛЛИЧЕСКИЕ ИНЕРЦИОННЫЕ. НЕ ЯВЛЯЕТСЯ КУЛЬТУРНОЙ ЦЕННОСТЬЮ
  • 9503007500 — ИГРУШКА ДЕТСКАЯ ПЛАСТМАССОВАЯ :ДИНОЗАВР ЭЛЕКТРОМЕХАНИЧЕСКИЙ МОТОЦИКЛ ИНЕРЦИОННЫЙ МОТОЦИКЛ ИНЕРЦИОННЫЙ МАШИНА ИНЕРЦИОННАЯ МАШИНА ИНЕРЦИОННАЯ МАШИНА ИНЕ
  • 9503007900 — ИГРУШКА ТРАНСПОРТНАЯ — МОДЕЛЬ МАШИНЫ , ИЗ МЕТАЛЛА С ПЛАСТМАССОВЫМИ ЧАСТЯМИ, С ИНЕРЦИОННЫМ МЕХАНИЗМОМ, НАБОР «»КОЛЛЕКЦИЯ-2″»: ЧАСТЬ НАБОРА: МАШИНА MITSUB

Двигатель EmDrive: может ли машина нарушить законы физики

Уникальная установка способна, к примеру, двигать в вакууме космический корабль. не используя топливо. Так почему же многие ученые считали (а некоторые продолжают считать до сих пор), что это изобретение — чистой воды шарлатанство?

Читать еще:  Холодный запуск двигателя последствия

Как работает EmDrive

Впервые концепция электромагнитной двигательной установки была опубликована еще в далеком 2002 году британской исследовательской компанией Satellite Propulsion Research, основанной аэрокосмическим инженером Роджером Шойером. Тогда же общественности был представлен и первый действующий прототип устройства. Да-да, именно знаменитые «британские ученые» изобрели фантастический двигатель, вызвавший волну скепсиса со стороны научного сообщества.

Дело в том, что EmDrive бросает вызов всем существующим законам физики (об этом мы уже писали). Его конструкция представляет собой магнетрон, генерирующий микроволны, а также резонатор высокой добротности — металлическое «ведро», ловушку для микроволн в форме герметичного конуса. Магнетрон (в повседневной жизни именно он обеспечивает работу микроволновых печей) связан с резонатором высокочастотной линией передачи, то есть обычным коаксиальным кабелем. Поступая в резонатор, ЭМ волна излучается в стороны обоих торцов с одинаковой фазовой скоростью, но с разной групповой скоростью — именно этим, по мнению создателя, и обусловлен эффект.

В чем состоит различие между этими двумя скоростями? Попадая в замкнутое пространство, электроны начинают распространяться в нем, отражаясь от внутренних стенок резонатора. Фазовая скорость — это скорость относительно отражающей поверхности, которая, по факту, определяет скорость перемещения электронов. Поскольку электроны попадают в камеру в из одного и того же источника, эта величина и в самом деле едина для всех. Групповая скорость, в свою очередь, представляет собой скорость электронов относительно торцевой стенки и возрастает по мере движения от узкой к широкой части конуса. Таким образом, по мнению Шойера, давление ЭМ волны на широкую стенку резонатора больше, чем на узкую, что и создает тягу.

Двигатель против ньютоновской физики

Так почему же ученые с этим не согласны? Основной претензией физиков является то, что принцип работы описываемой конструкции прямо противоречит третьему закону Ньютона, который гласит, что «действию всегда есть равное и противоположное противодействие, иначе — взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны». Говоря проще, в привычном нам пространстве на каждое действие приходится противодействие, равное по силе, но противоположное по направлению. Этот принцип объясняет причину работы всех современных двигателей, от реактивных (газ подается назад, что двигает машину вперед) до ионных (пучок заряженных атомов движется в одну сторону, а корабль в другую). У EmDrive выбросов же попросту. нет.

Кроме того, неучтенными остаются еще несколько не столь важных параметров. К примеру, автор концепции не учел то, что ЭМ волна оказывает давление не только на торцевые, но и на боковые стенки резонатора. После критики в свой адрес Шойер опубликовал нерецензированную работу с объяснениями своей точки зрения, но, по мнению экспертов, теория радиационного давления сложнее представленной им теории.

Технологии на грани фантастики

В 2013 году двигателем заинтересовалось NASA. Неудивительно: если EmDrive и в самом деле работает так, как заявлено, то это станет настоящей революцией в сфере космических перелетов. Устройство испытывали в лаборатории Eagleworks в космическом центре имени Джонсона. Работы проводились под руководством Гарольда Уайта, и в их ходе был получен аномальный результат — тяга величиной около 0,0001 Н. Уайт считает, что такой резонатор может работать посредством создания виртуального плазменного тороида, который реализует тягу с помощью магнитной гидродинамики при квантовых колебаниях вакуума. Условия для испытаний были выбраны щадящие, в 50 раз меньше по мощности, чем опыты самого Шойера. Они проходили на крутильном маятнике для малых сил, который способен обнаруживать силы в десятки микроньютонов, в герметичной вакуумной камере из нержавеющей стали при комнатной температуре воздуха и нормальном атмосферном давлении.

Немецкие физики подтвердили работоспособность «невозможного» двигателя на электромагнитной тяге

Немецкие учёные подтвердили, что «невозможный» двигатель на базе электромагнитных волн действительно может создавать ненулевую тягу. Результаты своего исследования они презентовали 27 июля на конференции, посвящённой двигателям и энергетике, которую проводил Американский институт аэронавтики и астронавтики. Представлял работу профессор Мартин Таджмар из Дрезденского технологического университета.

Читать еще:  Lada largus двигатель характеристики

Британский подданный и инженер Роджер Шойер основал компанию Satellite Propulsion Research Ltd в 2001 году специально для разработки электромагнитного двигателя (EmDrive) собственной конструкции. Инженер ранее работал в военной промышленности, принимал участие в космических проектах, включая разработку европейской системы глобальной навигации «Галилео».

Придуманный им двигатель на первый взгляд нарушает закон сохранения импульса — он создаёт тягу из-за отражения электромагнитного излучения от стенок отражательной камеры без какого бы то ни было реактивного выброса. Из-за сомнительной природы двигателя его долго не принимали всерьёз, однако, за проверку работоспособности в конце концов принялось НАСА — агентство с достаточно хорошей репутацией.

Испытания были проведены в прошлом году, и по их результатам агентство в апреле 2014 на конференции по двигателям подтвердило, что двигатель, испытанный ими, действительно создаёт (пусть и небольшую, 30-50 мкН) тягу. Отсутствие нарушений законов физики создатели двигателя объясняют тем, что движущиеся с околосветовыми скоростями магнитные волны подчиняются СТО, поэтому волны и камера находятся в разных системах отсчёта.

За проверку отвечал профессор Гарольд Уайт, который представил свою теоретическую модель работы двигателя. Он считает, что ускорение системе придают виртуальные частицы, которые рождаются в квантовом вакууме и ведут себя так же, как рабочее тело в ионных двигателях — только в данном случае рабочее тело извлекается из «самой ткани пространства-времени», что позволяет не тащить его с собой.

В презентации этого года профессор Мартин Таджмар указывает, что он с командой провели в лаборатории все тесты и подтвердили наличие реальной тяги у двигателя. При этом, как честно указывает учёный, «природа наблюдаемой тяги пока не ясна».

Как говорится в презентации: «Мы пронаблюдали тягу, совпадающую с предсказанными значениями, устранив при этом очень много возможных источников ошибок, что даёт основание для дальнейших исследований. На следующих этапах необходимо будет применить улучшенную магнитную изоляцию, дальнейшее проведение тестов в вакууме и улучшенные модели двигателя с увеличенными показателями тяги, и применением электронного управления, которое позволит настраивать устройство для поиска оптимального режима работы».

Придётся ли учёным переписать кое-какие представления о физических процессах, или же работа этого двигателя вполне объяснима с текущих научных позиций — покажет время. Но повторное подтверждение достаточно авторитетными исследователями даёт повод для осторожного оптимизма.

Интерес к устройству постоянно усиливается. Если на первых порах никто не принимал Шойера всерьёз, в частности, из-за отсутствия у него опубликованных научных работ, то сейчас у него есть и научная работа, и подтверждения работоспособности его детища. Конструкция аппарата гораздо проще, чем, например, те же ионные двигатели, и находится ближе к возможности создания «у себя в гараже».

На тему EmDrive существует уже неплохо наполненная википедия (на английском языке). В мае 2015 года румынский инженер собрал EmDrive самостоятельно и провёл независимое исследование работы этого «ведра с магнетроном», в результате чего также получил подтверждение работоспособности.

Если представить на минуту, что таким двигателем получится оснастить реальный межпланетный аппарат, это откроет невиданные доселе возможности для изучения Солнечной системы. Тот же полёт к Плутону, который у New Horions занял 9 с половиною лет, может быть осуществлён с двигателем типа EmDrive за 18 месяцев. И это только с учётом той тяги, которая была получена в лаборатории на сегодняшний день. Секрет в том, что такой двигатель сможет постоянно ускоряться, а не просто лететь по баллистической траектории.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector