0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое асинхронный электрический двигатель

Асинхронный электродвигатель: устройство, принцип работы, виды

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Устройство

Конструктивно простейшая асинхронная машина представляет собой рамку, вращающуюся в переменном магнитном поле. Однако на практике данная модель носит скорее ознакомительный характер и практического применения в промышленности не имеет. Поэтому на рисунке 1 ниже мы рассмотрим устройство действующей модели асинхронного электродвигателя.

Рис. 1. Устройство асинхронного электродвигателя

Весь двигатель располагается в корпусе станины 7, ее основная задача состоит в обеспечении достаточной механической прочности, способной выдерживать достаточные усилия. Поэтому чем выше мощность агрегата, тем большей прочностью должна обладать станина и корпус.

Внутрь корпуса устанавливается сердечник статора 3, выступающий в роли магнитного проводника для силовых линий рабочего поля. С целью уменьшения потерь в стали магнитопровод выполняется наборным из шихтованных листов, однако в ряде моделей применяется и монолитный вариант.

В пазы сердечника статора укладывается обмотка 2, предназначенная для пропуска электрического тока и формирования ЭДС. Число обмоток будет зависеть от количества пар полюсов на каждую фазу. Также в части уложенных обмоток электродвигатели подразделяются на:

  • трехфазные;
  • двухфазные;
  • однофазные.

Внутри статора располагается подвижный элемент – ротор 6. По конструкции ротор может быть короткозамкнутым или фазным, на рисунке приведен первый вариант. В состав ротора входит сердечник 5, также набранный из шихтованной стали и беличья клетка 4. Вся конструкция насажена на металлический вал 1, передающий вращение и механическое усилие.

Принцип работы

Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.

Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:

Рис. 2. Геометрическое смещение фаз в статоре

Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.

Рис. 3. Принцип формирования магнитного потока асинхронного двигателя

На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:

  • I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
  • II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
  • III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.

По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.

Отличие от синхронного двигателя

Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.

Рис. 4. Отличие асинхронного от синхронного электродвигателя

Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:

где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.

Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска.

На практике существует огромное количество разновидностей асинхронных электродвигателей, отличающихся как сферой применения, так и мощностью согласно ГОСТ 12139-84 . В связи с тем, что все вариации перечислить невозможно, мы рассмотрим наиболее значимые критерии, по которым асинхронные аппараты разделяются на виды.

По количеству питающих фаз выделяют:

  • трехфазные – используются в сетях, где есть возможность подключиться сразу ко всем фазам, но в частных случаях могут запускаться и в однофазной сети;
  • двухфазные – применяются во многих бытовых приборах, состоят из двух рабочих обмоток, одна из которых питается напряжением сети, а вторая подключается через фазосдвигающий конденсатор.
  • однофазные – как и предыдущая модель содержат две обмотки, одна из которых рабочая, а вторая пусковая.
Читать еще:  Щепорез своими руками с бензиновым двигателем

По типу ротора различают:

  • с короткозамкнутым ротором – имеет тяжелый пуск, но и меньшую стоимость;
  • с фазным ротором – на роторе устанавливается вспомогательная обмотка, делающая работу электродвигателя более плавной.

Рисунок 5: асинхронный двигатель с короткозамкнутым и с фазным ротором

По способу подачи питания:

  • статорные – классические модели, в которых рабочие обмотки устанавливают на статор;
  • роторные – рабочие обмотки помещаются на вращающемся элементе, широкое применение на практике получили асинхронные двигатели Шраге-Рихтера.

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  • изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.

  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

Трехфазного асинхронного двигателя.

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Рис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Рисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Применение

Область применения асинхронных электродвигателей охватывает достаточно большой сегмент хозяйственной деятельности человека. Поэтому их можно встретить в различных типах станочного оборудования – токарных, шлифовальных, фрезерных, прокатных и т.д. В работе грузоподъемных кранов, талей, тельферов и прочих механизмов.

Их используют для лифтов, горнодобывающей техники, землеройного оборудования, эскалаторов, конвейеров. В быту их можно встретить в вентиляторах, микроволновках, хлебопечках и прочих вспомогательных устройствах. Такая популярность асинхронных электродвигателей обусловлена их весомыми преимуществами.

Преимущества и недостатки

К преимуществам асинхронных электродвигателей, в сравнении с другими типами электрических машин следует отнести:

  • Относительно меньшая стоимость, в сравнении с другими типами электродвигателей, за счет простоты конструкции;
  • Высокая степень надежности, благодаря отсутствию вспомогательных элементов редко выходят со строя;
  • Способны выносить кратковременные перегрузки;
  • Могут включаться в цепь напрямую без использования дополнительного оборудования;
  • Низкие затраты на содержание в ходе эксплуатации.

Основными недостатками асинхронного электродвигателя являются относительно большие пусковые токи и слабый пусковой момент, что в определенной степени ограничивает сферу прямого включения. Также асинхронные электродвигатели обладают низким коэффициентом мощности и сильно зависят от параметров питающего напряжения.

Видео по теме

Однофазный асинхронный двигатель с экранированным полюсом A24NR551

Срок поставки: по запросу

Цена товара: Нашли дешевле?

  • Крупный опт

    Для снабженца

    Если у Вас есть полный перечень необходимого оборудования вы можете отправить заявку целиком через форму на нашем сайте

    Описание, каталоги и инструкции
    • Технические характеристики
    • Описание товара
    • Оплата
    • Доставка
    ПроизводительATAS
    ВращениеВлево
    ЗащитаIP00
    МодельA24NR551
    Напряжение, В230
    Номинальный ток, А0,68
    Обороты (1/min)2700
    РежимS2 30min
    Потребляемая мощность, Вт77

    Асинхронные электродвигатели малой мощности производство завода ATAS Elektromotory имеют широкую область применения, используются в узлах и механизмах различного оборудования.

    Широко применяются в качестве электроприводов запорной арматуры, лабораторном оборудовании, в качестве приводов вентиляторов, в авиационной промышленности и прочих сферах.

    Номинальная мощность производимых асинхронных двигателей не превышает 700 Вт. В линейку входят как однофазные, так и трёхфазные двигатели.

    Производитель: ATAS (Чехия)

    Для юридических лиц Наша компания работает по безналичному расчету с юридическими лицами. В стоимость товара включен НДС 20%. Оплата товара производится на основании выставленного счета или Договора поставки.

    Для физических лиц Также можно оплатить товар от физического лица через любой банк. Для этого также выставляется счет на оплату на физическое лицо и заключается Договор.

    Читать еще:  Toyota auris проверь двигатель причины

    Получить приобретенный товар можно несколькими способами:

    Курьерская доставка Наши курьеры доставляют небольшие заказы до адреса.

    Доставка собственным транспортом Мы осуществляем доставку заказов автотранспортом до двери по Москве и Московской области

    Доставка транспортной компанией в регионы Бесплатно довозим заказ до терминала транспортной компании с последующей отправкой в регионы

    Самовывоз Забрать товар с нашего склада по адресу г. Москва, ул. Перовская д. 61/2, стр.1

    Оставьте свои контактные данные и наш менеджер свяжется с вами в ближайшее время.

    Синхронный и асинхронный электродвигатели: какой лучше?

    Краткий экскурс в историю.

    «Противостояние» синхронных и асинхронных электродвигателей началось ещё в середине XX века. В то время во главе «команды синхронных», выступал так называемый электродвигатель постоянного тока, он же «коллекторный», он же простейший «член семьи» синхронных электрических машин. Почему «простейший» ? Из-за того, что у него, в отличие от современного синхронного электродвигателя, встроена примитивная система управления — коллектор. Эта важная деталь помогла достичь главного: создать простую и дешевую синхронную машину, которую можно питать непосредственно от источника постоянного тока. Однако, недостатков у коллекторных электродвигателей оказалось гораздо больше, чем преимуществ: ограниченный ресурс работы и низкая надёжность, а также конструктивное ограничение количества полюсов не позволяло наращивать крутящий момент.

    Именно на волне борьбы с проблемным коллектором в 80-90х годах прошлого века и стали набирать популярность бесколлекторные асинхронные электродвигатели. Несмотря на то, что технологически «асинхронник» оказалось сделать сложнее, а КПД и крутящий момент существенно уступают аналогичным синхронным электродвигателям, «асинхронники» начали быстро вытеснять коллекторные электромоторы. У бесколлекторных синхронных электродвигателей тогда ещё не было шансов, так как для их изготовления и качественного управления ещё не существовало доступной технологической и элементной базы. Из-за этого до сих пор у некоторых специалистов и представителей старшего поколения сохранилось устойчивое предубеждение, что синхронные электродвигатели — это очень дорого и сложно. До тех пор, пока не были созданы доступные цифровые системы и новые алгоритмы управления, одним из основных недостатков синхронных электродвигателей считалось отсутствие возможности управлять их оборотами.

    Сегодняшний день.

    Синхронные электродвигатели серии EM-I с КПД, достигающим 97 — 98,5%.

    За последние 5-10 лет перспективы для синхронных электрических машин кардинально улучшились и расширились! При начавшимся переходе к 6-му Технологическому Укладу становятся всё более доступными и массовыми новые производственные технологии, такие как: металлопласты и теплопроводные композиты, порошковая металлургия и 3 D- печать и т.п. Во много раз подешевели и улучшили свои характеристики силовые полупроводники, специализированные микроконтроллеры и прочая электронная элементная база. Разработаны новые оригинальные решения, позволяющие в несколько раз увеличить удельные силовые характеристики электрических машин. Благодаря бурному развитию современных частотных преобразователей с цифровыми системами управления, синхронными электродвигателями стало легко управлять. Точная управляемость всеми силовыми характеристиками синхронных приводов во всём рабочем диапазоне оборотов и высокая экономичность, как при разгоне, так и на холостом ходу, стали дополнительными важными преимуществами относительно «асинхронников». Из-за своих конструктивных особенностей асинхронные электродвигатели неэффективны на холостом ходу и малых оборотах, непрерывно расходуя энергию на возбуждение ротора и требуя сверх-токов для разгона, которые превышают номинальные значения в 4-5 раз! Для сравнения, синхронные электродвигатели развивают номинальный крутящий момент во всём рабочем диапазоне оборотов при номинальном токе. Меньший рабочий ток позволяет, в частности, использовать аккумуляторы с большей удельной ёмкостью.

    Более высокие КПД и крутящий момент при относительно малых рабочих токах и хорошей управляемости позволяют синхронным электродвигателям успешно вытеснять асинхронные во всех типах электротранспорта: наземном, воздушном и водном. Из таких передовых отраслей, как робототехника, мехатроника и авиастроение асинхронные электродвигатели уже вытеснены синхронными практически полностью.

    Примером реализации огромного потенциала бесколлекторных синхронных электроприводов является новое поколение современных синхронных машин серий AW , EM и iEM . Д анные синхронные электрические машины показывают впечатляющие удельные силовые характеристики, которые в 5-10 раз превосходят традиционные «асинхронники», позволяя переходить от распространённых систем «асинхронный мотор с редуктором» на прямой (безредукторный) электропривод.

    Классический асинхронный электродвигатель

    Высоко-моментные синхронные электродвигатели серий EMи iEM

    За последние пол-века конструкция и технология производства асинхронных электродвигателей была настолько хорошо отработана и оптимизирована, что какие-либо дальнейшие усовершенствования или улучшения их электрических параметров, даже с использованием современных программно-вычислительных средств, уже не позволяют рассчитывать на ощутимое сокращение столь большого отставания от современных синхронных электродвигателей по удельным силовым характеристикам. Максимум, что сейчас обеспечивают такие усовершенствования «асинхронников» — это улучшение параметров всего на 20-30%. Для соответствия таким важным требованиям 6-го Технологического Уклада , как минимизация материалоёмкости, высокая экономичность и точная управляемость этого улучшения недостаточно, особенно на фоне высоких характеристик, которые демонстрируют современные синхронные электрические машины.

    Основное преимущество, которое пока ещё сохраняют асинхронные электродвигатели, благодаря созданным производственным мощностям в странах Азии и высокой конкуренции — это низкая цена. Однако, при достижении сопоставимых с асинхронными двигателями объёмов серийного производства, себестоимость синхронных электрических машин серий AW, EM и iEM неизбежно станет ниже аналогичных по мощности «асинхронников», потому что:

    1) синхронные электрические машины серий AW, EM и iEM имеют в несколько раз (!) меньшие масса-габариты по сравнению с «асинхронниками» аналогичной мощности или крутящего момента, что означает пропорционально меньшую материалоёмкость серий AW , EM и iEM .

    При этом, вопреки распространённым мифам, стоимость постоянных неодимовых магнитов на практике не превышает 30% от стоимости остальных материалов и комплектующих данных синхронных электрических машин, включая используемые современные композиты.

    Читать еще:  Чем заменить двигатель ga16

    Указывая на постоянные магниты, как основной недостаток при производстве роторов современных высокомоментных электродвигателей, защитники асинхронных электродвигателей умалчивают про высокую трудоёмкость и сложность серийного производства статоров для асинхронных двигателей. Даже крупные специализированные предприятия, как правило, осуществляют серийную намотку и сборку статоров асинхронных электродвигателей только вручную, что ощутимо сказывается на их себестоимости!

    2) В отличие от классических асинхронных и синхронных электрических машин, модели серий AW, EM и iEM обладают высокой технологичностью серийной сборки! Это достигается не только широким применением современных композитных материалов в конструкции статора и ротора, но и возможностью обеспечения полной автоматизации серийного производства с относительно небольшими капитальными вложениями в оборудование. Это позволяет не только снизить себестоимость, но и увеличить надёжность выпускаемой продукции.

    * Этап ручной сборки статора асинхронного двигателя на профильном производстве.

    Композитный статор CCSC-3 для серий AW и EM , собранный с использованием оборудования автоматической намотки бескаркасных катушек

    Таким образом, по сравнению с асинхронными, электродвигатели серий EM и iEM имеют относительно более высокую стоимость композитного ротора из-за постоянных магнитов, но, при этом, обеспечивают более низкую себестоимость композитных статоров, благодаря высокой технологичности и автоматизации серийной сборки.

    При столь очевидных преимуществах современных синхронных приводов любые попытки сдерживать их развитие страшилками про «размагничивающиеся магниты», «дороговизну», «труднодоступность» и т.п., вряд ли помогут адептам «асинхронников» удержать свои позиции на рынке современных сложных систем, особенно в условиях назревшей необходимости перевода целого ряда ключевых отраслей РФ с преобладающих технологических уровней 3-4-го Технологических Укладов сразу к 6-му Технологическому Укладу, минуя 5-й.

    Исторические аналогии.

    Если проводить исторические аналогии, то недавно начавшийся переход от асинхронных к синхронным электродвигателям можно сравнить по значимости с появлением застёжки «молния» в первой половине XX века или с переходом от аналоговых к цифровым устройствам в 80-х годах прошлого столетия.

    Массовое использование этих прорывных технологий стало возможно только при смене технологических укладов, несмотря на то, что соответствующие изобретения появились ещё за несколько десятилетий до их успешного внедрения.

    Застёжка «молния» была запатентована в 1891 году, в начале 3-го Технологического Уклада («Эпоха стали»). После десятилетий гонений и множества неудачных попыток внедрения, серийное производство «молнии» и вытеснение шнуровки из многих отраслей стало возможно именно в разгар 4-го Технологического Уклада («Эпоха нефти»), начиная с 1923 года, когда достигнутый уровень промышленного производства позволил освоить новые производственные технологии.

    Класс синхронных безредукторных электроприводов «Torque Motors» начал развиваться на Западе совсем недавно, примерно с 2012 года, что как раз совпадает с началом перехода к 6-му Технологическому Укладу . Неизменно только одно: новые изобретения и технологии, как обычно, подвергаются ожесточённому противодействию со стороны тех игроков рынка, кто уже построил свой бизнес с использованием устаревших или уходящих технологий.

    Ассоциация «аналог-цифра» возникла у нас в процессе компьютерного моделирования электрических машин EM и iEM , когда мы сравнили математические модели, описывающие синхронные и асинхронные электрические машины. Оказалось, что, в отличие от асинхронного двигателя, для описания синхронной электрической машины существует точная математическая модель. В то время, как для описания «асинхронников» приходится использовать только приблизительные, аппроксимированные модели. Отсюда и ассоциация с «аналогом» и «цифрой», двумя совершенно разными подходами, потребительскими свойствами и перспективами применения.

    *В данной статье использовано изображение с ресурса

    Электротехника

    Электротехническое оборудование, приборы, инструменты все активнее входят в жизнь человека, делая ее комфортнее, безопаснее.

    Торговый дом «Электростиль» 20 лет продает электротовары по прямым поставкам от ведущих российских и мировых производителей.

    Покупателю предлагается электротехника:

    • провода, кабели;
    • светотехника;
    • электрозащитные средства;
    • трансформаторы;
    • аккумуляторы;
    • электродвигатели;
    • сопутствующие электротехнические аксессуары.

    Читать далее

    Магазин инструментов

    Мастер-любитель, электрик-профессионал может выбрать в каталоге ТД «Электростиль»:

    • инструменты для опрессовки, резки, изоляции;
    • электроинструменты;
    • паяльное оборудование;
    • оснастку, расходные материалы.

    Здесь представлена продукция популярных брендов:

    • Bosch;
    • Makita;
    • Bort,
    • «Зубр»;
    • «Инкар».

    Чем мы лучше?

    1. Ассортимент из 18 тыс. позиций, объединенных в 21 категорию.
    2. Прямые договора с 5 крупнейшими российскими производителями электрооборудования.
    3. Основной объем (70%) электротехники – от российских фирм-производителей, продукцию которых хорошо оценили покупатели.
    4. Комплексные поставки электрооборудования и аксессуаров под запросы клиента.
    5. Собственные склады с постоянно пополняемым запасом.
    6. Сертифицированная продукция.
    7. Скидки и отсрочки платежей для больших проектов.
    8. Удобные информационные сервисы.
    9. Быстрая, безопасная система заказа.

    Ваши выгоды

    Выбрав ТД «Электростиль», вы получите:

    1. Экономию времени на поиск, сравнение характеристик и выбор электротехники или инструмента.
    2. Уверенность, что заказанный товар будет получен в короткие сроки со складов ТД «Электростиль».
    3. Экономию бюджета за счет низких цен на оборудование, приборы без накруток посредникам.
    4. Гарантированно безопасный и качественный товар от официальных поставщиков.
    5. Возможность комплексного заказа в одном стиле.

    ТД «Электростиль» имеет склады и магазины в г. Омске и области (Калачинск, Оконешниково), Казахстане (Нур-Султан, Петропавловск).

    Возможны розничные и оптовые покупки без ограничения объема.

    Технические консультации по вопросам выбора, приобретения и эксплуатации электрооборудования менеджеры проведут в любой удобной для клиента форме:

    • по телефонам;
    • через форму обратной связи на сайте «Задайте вопрос»;
    • по электронной почте.

    Купить выбранную модель просто и быстро с помощью кнопок на сайте.

    Доставка товара производится по г. Омску, а также в магазины в городах представительства ТД «Электростиль».

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    Adblock
    detector