2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое абиом двигателя

Технические характеристики Volvo XC90

ДвигателиD5 AWD (235 л.с.) (5 мест)D5 AWD (235 л.с.) (7 мест)T6 AWD (320 л.с.) (5 мест)T6 AWD (320 л.с.) (7 мест)
Название двигателяD4204T11D4204T11B4204T27B4204T27
Описание типа двигателя4-х цилиндровый турбированный дизельный4-х цилиндровый турбированный дизельный4-х цилиндровый турбированный бензиновый4-х цилиндровый турбированный бензиновый
Тип приводаПолный приводПолный приводПолный приводПолный привод
Кол-во цилиндров4444
Объем двигателя1969 см 31969 см 31969 см 31969 см 3
Максимальная мощность (кВт)165 кВт165 кВт235 кВт235 кВт
Мощность (л.с.)235 л.с.235 л.с.320 л.с.320 л.с.
Об/мин при максимальной мощности4250 об/мин4250 об/мин5700 об/мин5700 об/мин
Крутящий момент470 Нм470 Нм400 Нм400 Нм
Об/мин при максимальном крутящем моменте1750 — 2500 об/мин1750 — 2500 об/мин2200 — 5400 об/мин2200 — 5400 об/мин
Тип топливаДизельДизельБензинБензин
Динамические характеристикиD5 AWD (235 л.с.) (5 мест)D5 AWD (235 л.с.) (7 мест)T6 AWD (320 л.с.) (5 мест)T6 AWD (320 л.с.) (7 мест)
КППВосьмиступенчатая АКПП GeartronicВосьмиступенчатая АКПП GeartronicВосьмиступенчатая АКПП GeartronicВосьмиступенчатая АКПП Geartronic
Расход топлива (средний)5,8 л/100км5,8 л/100км8 л/100км8 л/100км
Расход топлива (трасса)5,5 л/100км5,5 л/100км7 л/100км7 л/100км
Выброс СО2152 г/км152 г/км186 г/км186 г/км
ВместимостьD5 AWD (235 л.с.) (5 мест)D5 AWD (235 л.с.) (7 мест)T6 AWD (320 л.с.) (5 мест)T6 AWD (320 л.с.) (7 мест)
Объем топливного бака71 л71 л71 л71 л
Объем багажника936 л936 л936 л936 л
Максимальная масса прицепа2700 кг2700 кг2700 кг2700 кг
МассаD5 AWD (235 л.с.) (5 мест)D5 AWD (235 л.с.) (7 мест)T6 AWD (320 л.с.) (5 мест)T6 AWD (320 л.с.) (7 мест)
Снаряженный автомобиль1969 кг2009 кг1966 кг2004 кг
Максимальная нагрузка на крышу100 кг100 кг100 кг100 кг
Внешние габаритыD5 AWD (235 л.с.) (5 мест)D5 AWD (235 л.с.) (7 мест)T6 AWD (320 л.с.) (5 мест)T6 AWD (320 л.с.) (7 мест)
Высота1776 мм1776 мм1776 мм1776 мм
Длина4950 мм4950 мм4950 мм4950 мм
Ширина2008 мм2008 мм2008 мм2008 мм
Ширина с зеркалами2140 мм2140 мм2140 мм2140 мм
Колесная база2984 мм2984 мм2984 мм2984 мм
Ширина передней колеи1668 мм1668 мм1668 мм1668 мм
Ширина задней колеи1671 мм1671 мм1671 мм1671 мм
Диаметр разворота11.9 м11.9 м11.9 м11.9 м
Внутренние габаритыD5 AWD (235 л.с.) (5 мест)D5 AWD (235 л.с.) (7 мест)T6 AWD (320 л.с.) (5 мест)T6 AWD (320 л.с.) (7 мест)
Высота кузова впереди1051 мм1051 мм1051 мм1051 мм
Высота кузова сзади999 мм997 мм999 мм997 мм
Ширина кузова впереди на уровне плеч1465 мм1465 мм1465 мм1465 мм
Ширина кузова сзади на уровне плеч1435 мм1435 мм1435 мм1435 мм
Пространство для ног впереди1038 мм1038 мм1038 мм1038 мм
Пространство для ног сзади940 мм940 мм940 мм940 мм
Ширина кузова впереди на уровне бедер1422 мм1422 мм1422 мм1422 мм
Ширина кузова сзади на уровне бедер1435 мм1435 мм1435 мм1435 мм
ПрочееEuro 6Euro 6Euro 6Euro 6

Настоящим Я, в соответствии с требованиями Федерального закона от 27.07.2006 г. №152-ФЗ «О персональных данных» даю свое согласие лично, своей волей и в своем интересе на обработку (сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, распространение, передачу (включая трансграничную передачу), обезличивание, блокирование и уничтожение) моих персональных данных, в т.ч. с использованием средств автоматизации.

Согласие предоставляется в отношении следующих персональных данных: Фамилия, имя, отчество, Год, месяц, дата рождения; Пол; Контактные телефоны; Контактный адрес; Контактный email; адрес; Сведения о профессиональной деятельности; Модель приобретенного; обслуживаемого автомобиля; Название дилерского центра, где приобретен / обслуживался / ремонтировался а/м; Дата выдачи автомобиля при покупке / из сервиса; Государственный номерной знак автомобиля; VIN –номер автомобиля; Пробег автомобиля; Перечень работ, проведенных с автомобилем; Перечень замененных деталей.

Согласие предоставляется в целях определения потребностей в производственной мощности, мониторинга исполнения сервисными центрами гарантийной политики; ведения истории обращения в сервисные центры; проведения маркетинговых исследований в области продаж, сервиса и послепродажного обслуживания; для рекламных, исследовательских, информационных, а также иных целей.

Предоставляя свои персональные данные, я даю согласие на направление мне рекламной информации и участие в маркетинговых опросах.

Согласие предоставляется: ООО «Премьер Авто»

  • ОГРН 1115032006253
  • от 28.07.2011 г.,
  • ИНН 5006241178,
  • КПП 500601001, ОКПО 90187025

Согласие действует 75 лет и может быть отозвано в любой момент на основании письменного заявления.

Грязь под клапанной крышкой двигателя

Агрегат/система: Двигатель

Неисправность: Грязь под клапанной крышкой двигателя

Симптомы

  • Наличие большого количества лаковых отложений на деталях ГРМ.
  • Наличие масляного шлама под клапанной крышкой.

Причины возникновения неисправности

  • Несвоевременная замена масла.
  • Использование масла низкого качества.
  • Использование не подходящего масла.
  • Серьезные неисправности систем впрыска топлива.

Возможные последствия неустранения

Появление лаковых отложений и шлама под клапанной крышкой является очень тревожным сигналом, говорящем о серьезных неисправностях топливной аппаратуры автомобиля, либо о применении не качественного масла или нарушении интервалов его замены. Невмешательство в этой ситуации – это гарантированный выход двигателя из строя. В запущенных случаях, в результате появления задиров на всех трущихся поверхностях, потребуется только полная замена двигателя, т.к. отремонтировать старый будет невозможно.

Решение проблемы

Необходимо промыть масляную систему двигателя.
Варианты промывок:

Промывка от масляного шлама Oil-Schlamm-Spulung

Усиленная промывка двигателя Oil-Schlamm-Spulung применяется для очистки двигателей в состоянии сильного загрязнения и при наличии шлама, образованного в системе после длительных перегревов, ненормативной замене масла, попадании воды в систему, использовании некачественных масел и топлива. На сильный уровень загрязнений косвенно указывает наличие мазеобразных отложений под масляной крышкой. Помогает устранять вызванные загрязнение системы проблемы, такие как шумы в приводе цепи, стук гидрокомпенсаторов. Рекомендуется для автомобилей с пробегом более 100 000 км.

Артикул: 1990
Объем: 0,3 л

Как применять Oil-Schlamm-Spulung

  • Добавить в старое масло в прогретый двигатель за 150-200 км до планируемого срока смены из расчета 300 мл на 5 л моторного масла.
  • Эксплуатировать автомобиль как обычно, не превышая 2/3 мощности двигателя.
  • При прохождении 150-200 км слить старое масло, заменить масляный фильтр.
  • Залить свежее высококачественное масло.
Читать еще:  Шевроле круз предохранитель на запуск двигателя

Очиститель масляной системы усиленного действия Oilsystem Spulung High Performance Benzin/Diesel

Быстрая промывка двигателя Oilsystem Spulung High Performance применяется для усиленной очистки при уже возникших проблемах с двигателем: перегреве, падении компрессии и мощности, а также при сильном превышении сроков замены масла и использовании некачественного топлива.

Oilsystem Spulung High Performance Benzin
Артикул: 7592 Объем: 0,3 л

Oilsystem Spulung High Performance Diesel
Артикул: 7593 Объем: 0,3 л

Как применять Oilsystem Spulung High Performance

  • Добавить в прогретое масло перед заменой из расчета 300 мл присадки на 5 л моторного масла.
  • Запустить двигатель и дать ему поработать 10 минут на холостом ходу.
    (ДВИГАТЬСЯ НА АВТОМОБИЛЕ ДО ЗАЛИВКИ НОВОГО МАСЛА НЕЛЬЗЯ!)
  • Слить масло, заменить масляный фильтр.
  • Залить свежее высококачественное масло.

Как правильно подобрать нужную промывку?

Это сделать просто, ответив на несколько простых вопросов в программе подбора промывок.

Результат применения очистителей масляной системы

  • Удалены коксовые отложения.
  • Удалены лаковые отложения.
  • Восстановлена пропускная способность масляных каналов.
  • Очищены элементы гидравлических систем двигателя.

Видео

;

Американские двигатели: зачем при не всегда высокой мощности такой большой объем?

Вопрос:

Зачем выбирать мотор большого объема и почему на американских авто устанавливается большой объем двигателя при не всегда впечатляющей мощности?

Ведь некоторые японские/европейские авто выжимают 300 л.с. из 2 или 3 литров двигателя, а не из 5 литров (как американские) и они же при одинаковом его объеме с американскими авто выдают больше мощности в л.с., например, Мерседес объемом в 5 литров выдает 330 л/с, а Джип Гранд Чероки при том же объеме выдает всего-навсего 220.

Откинув эмоции и не переходя на личности, попробую рассказать, что такое американский двигатель вообще и он же большого объема в частности.

Дело в том, что люди, которые пытаются сравнивают классические американские двигатели с европейскими или японскими по мощности — являются абсолютными невеждами в автомобильной области вообще, и в области двигателестроения в частности.

Классический большеобъемный американский мотор и европейские/японские малолитражные моторы имеют кардинальные отличия.

Но обо всем по порядку.

Когда то давно, в 50-70 годах, американцы были беззаботными и веселыми ребятами, которые с удовольствием ездили на больших, и на тот момент очень совершенных автомобилях.

В то время надпись Made in USA на автомобиле означала престиж и качество. Да и по другому быть не могло, ибо уже тогда американцы делали отличных машин едва ли не больше, чем во всем остальном мире вместе взятом.

Японский автопром тогда ходил под стол пешком и ходил туда в таком положении где-то до середины 80-х годов.

В европе тогда автопром тоже не блистал яркостью и разнообразием.

Кстати, такой любимый нынешнеми ценителями MB SL Gullwing, имел в подвеске не шаровые опоры, а шкворни, в то время как в америке в это же время даже на семейные седаны ставились шаровые опоры. Это так, для сведения, чтобы был ясен уровень Америки и Европы с Японией на тот момент.

Тогда, каждому американцу было ясно как день, что хороший автомобиль — это большой американский автомобиль. Чем больше и просторнее — тем лучше. И для обеспечения неплохой динамики почти 3-х тонным машинкам нужен был мощный двигатель.

И американцы, не долго думая, рассудили просто. Чем больше объем — тем больше мощность. Отсюда и пошли 4, 5, 7 и 8 литровые двигатели. Тогда, в то время они без особого напряга выдавали 300-400 лошадей и могли разгонять 3-х тонного 6-ти метрового сверкающего хромом красавца до сотни секунд за 9-10. Машинка при этом могла кушать 30-40 литров бензина, однако, такой расход в то время никого особенно не пугал, ибо бензина было много, он был дешевый а доходы даже простых американцев росли вместе с подъемом экономики Америки.

В Европе же, от банальной послевоенной бедности и природной прижимистости европейцев такие мощные двигатели никак не могли появится, и европа пошла своим путем. Они начали делать маленькие двигатели и ставить их в свои плешивые маленькие автомобильчики типа Ситроен 2CV. А уж потом, по мере развития технологий стали доводить эти маленькие моторчики и поднимать их мощность с целью научить свои евродрандулеты ездить быстрее.

Но пришел топливный кризис 70-х и американцы задумались о том, что не все в этом мире так просто. К тому же в штатах, вовсю набирались сил т.н. зеленые, борющиеся за чистый воздух и прочие высокие материи. Их крайне раздражали прожорливые и достаточно неэкологичные моторы большого объема, и в результате под лозунгом борьбы за экологию и экономию бензина, произошло ключевое событие:

АМЕРИКАНСКИЕ ДВИГАТЕЛИ УРЕЗАЛИ ПО МОЩНОСТИ ОСТАВИВ ПРИ ЭТОМ ИХ ОБЪЕМ

И в результате к примеру Бьюик Ривера 74 года выпуска с двигателем объемом 7.5 литров имел мощность 245 лошадей при степени сжатия 8.5:1. Хотя снять с этого двигателя все 400 лошадей можно было бы путем нескольких простых операций. Но нельзя. Зеленые не разрешали.

Как примерно гласит американская пословица — «Если тебе попался лимон, не расстраивайся — сделай из него лимонад» так и в урезании мощности двигателей вскоре нашли своеобразный плюс.

Во-первых, большие двигатели с низкой мощностью обладали гигантским крутящим моментом на низких оборотах, и как следствие во первых, автомобиль обладал хорошей динамикой разгона на любых скоростях.

Во-вторых, из-за того, что двигатель был низкооборотистым (максимум 4000-4500 об/мин), автомобиль обладал НИЗКИМ УРОВНЕМ ШУМА двигателя при движении с постоянной скоростью. Ну а так как хорошая машина для американцев — это комфортная машина, то такое положение вещей очень даже всех устроило.

И с тех пор, американцы поступили мудро, сохранив традицию оснащать свои автомобили большеобъемными, низкооборотистыми моментными двигателями. Именно поэтому двигатель, например Джип Гранд Чероки при объеме в 5.2 литра имеет мощность «лишь» 220 лошадей, но зато при этом обладает далеко недетским крутящим моментом в 406 Nm уже при 2800 оборотах, что делает его очень серьезным противником на светофорных гонках даже для 740 БМВ.

А все дело в том, что БМВ обладая большей мощностью при меньшем объеме, имеет пик крутящего момента выше чем двигатель гранда. И так в любом европейском или японском двигателе.

ЧЕМ ВЫШЕ МОЩНОСТЬ ПРИ МЕНЬШЕМ ОБЪЕМЕ, ТЕМ БЫСТРЕЕ ДОЛЖЕН ВРАЩАТЬСЯ ДВИГАТЕЛЬ

На практике это означает, что для того чтобы какой-нибудь узкоглазый автомобиль с 2 литровым 200 лошадным двигателем разгонялся так как Гранд, двигатель этого узкоглазого должен визжать как электродрель где-нибудь на 8000 оборотов, в то время как гранд будет разгонятся точно так же, а то и быстрее расслабленно бурча на 3000 оборотах.

Это немного утрированно, но смысл именно такой.

Итак, законспектируем и запомним:

  • На разгонную динамику автомобиля влияет не максимальная мощность двигателя, а его крутящий момент, измеряемый в Ньютон-метрах. Чем ниже по оборотам двигателя находится пик крутящего момента, тем быстрее машина будет разгонятся с низкого старта. Именно в этом сильны американские большеобъемные двигатели.
  • Максимальная мощность двигателя влияет на максимальную скорость автомобиля, а не на динамику его разгона.
  • Классический большеобъемный американский двигатель отличается от европейского и японского прежде всего тем, что обладает низкой литровой мощностью но при этом большим крутящим моментом на низких оборотах (2500-3000), низкой степенью сжатия и, как следствие, БОЛЬШОЙ ДОЛГОВЕЧНОСТЬЮ.
  • Для особо непонятливых — еще проще: Американский двигатель крутится медленно, а разгоняет машину офигенно быстро. В этом его ОСНОВНОЕ отличие от европейских и японских малообъемных агрегатов.
Читать еще:  Что за двигатель maxxforce

Двигатели с изменяемой степенью сжатия: от Saab до Infiniti

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Разбираемся, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней.

Париж 2016: Infiniti готовит премьеру новаторского мотора

Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23.

Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии.

При малых нагрузках, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально.

Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а — поршень, b — шатун, с — траверса, d — коленвал, е — электродвигатель, f — промежуточный вал, g — тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Читать еще:  Что такое вакуумный датчик двигателя

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Facebook

Unsupported Browser

Расход топлива и объем двигателя

• Многих автолюбителей волнует вопрос – как связаны расход топлива и объем двигателя. Казалось было логично, что если больше объем двигателя (например – 2,0 или 2,5 литра), то тем и расход больше! А вот не всегда это так, бывает что двигатель объемом в 1,5 литра «кушает» больше чем двигатель объемом в 2,0 литра. Почему так происходит?

— Итак, расход топлива и объем двигателя.

• В мозге рисуется логичная прямая: чем больше объем – тем больше в этот двигатель поместится топлива, а соответственно и расход будет намного выше. Но почему практика иногда показывает обратную картину? Например, двигатель современного автомобиля с объемом в 2,0 литра имеет расход (на механике около 7-8 литров, взять тот же Skyactiv от Mazda), а вот автомобиль не совсем свежего отечественного производителя с двигателем в 1,5 литра будет иметь расход в 8 – 9 литров. Так где же логика?

— Все зависит от множества факторов.

1) Технологичность . Первая причина это технологичность двигателя, автомобили очень быстро эволюционируют, а особенно сильно эволюционируют двигатели, становятся более мощными и более экономичными. Но как такое возможно? Все просто появляются новые технологии, которые позволяют увеличить мощность и уменьшить расход топлива.

Простые примеры это 16 клапанов вместо 8 (быстрее впрыск топлива и отвод отработанных газов), или же инжектор вместо карбюратора (инжектор практически никогда не перельет топлива и не зальет свечи в отличие от карбюратора), также появился многоточечный впрыск топлива в цилиндры и т.д. В общем сейчас существует очень много технологий которые на механическом уровне позволяют экономить двигателю топливо, без потери мощности.

2) Прошивки. Не секрет что сейчас, в «инжекторных» автомобилях можно менять программу прошивки блока ЭБУ (мозга двигателя). Автомобиль при помощи таких прошивках может быть очень экономичный! НО при таких «экономичных» прошивках страдает мощность двигателя, то есть автомобиль получается «задушенный», с места с «пробуксоном» на нем не тронешься. Правда можно поставить и «мощную» прошивку тут все будет наоборот, расход увеличится, причем многократно, но и увеличится мощность также многократно. Тут нужно выбирать, что для вас нужно.

3) Стиль езды. Тут как говорится, можно экономить – ездить спокойно, а можно топить педаль в пол, соответственно и расход увеличится. От стиля езды расход очень сильно зависит.

4) Техническая исправность автомобиля. Очень обширная тема, на расход может влиять очень многое. Если у вас элементарно давно не менялись воздушный и топливный фильтры, давно не чистилась топливная рейка, то расход топлива будет увеличен. Вполне может двигатель 1,6 литра (со старыми фильтрами) расходовать больше чем 2,0 литра (но со свежими фильтрами). Так что следим за фильтрами и меняем их вовремя.

5) Тип трансмиссии. Следующим пунктом в нашей статье – расход топлива и объем двигателя, логично поговорить о типе трансмиссии. Тут все понятно, механика и продвинутые автоматы (вариаторы, коробка DSG или автомат на шесть и более передач), будут расходовать меньше, чем старые автоматы на три – четыре передачи. Таким образом, если автомобиль с двигателем 1,4 литра укомплектован автоматом на 4 передачи, то он будет расходовать больше, чем автомобиль с двигателем 2,0 литра, но с вариатором или автоматом на 6-ть передач.

6) Турбина или не турбина. Если взять два двигателя: – например обычный 1,4 литра и турбированный 1,6 литра. ТО второй 1,6 литра, не только будет намного экономичнее (экономия иногда достигает 20 %), но и намного мощнее и производительне е.

7) Ошибочная экономия. Давайте реально подумаем – почему иногда двигатель 1,4 литра намного прожорливее, чем 1,6 литра или 2,0 литра? Все дело в мощности двигателя. Если взять один и тот же автомобиль, с одинаковой массой, но с разными двигателями (обычные, не турбированные), то получается. Чтобы достигнуть таких же характеристик разгона, двигателю 1,4 литра нужно работать в более высоких оборотах, а соответственно его практически всегда нужно будет раскручивать даже если нужно достигнуть 60 км/ч, иначе ваш автомобиль попросту не будет ехать.

Если крутим двигатель больше, то и расход будет больше, это логично. Теперь двигатель 1,6 литра, он намного мощнее своего собрата, чтобы ему достигнуть 60 км/ч ему не нужно больших оборотов, он будет работать в среднем режиме, соответственно и расход топлива зашкаливать не будет.

Не нужно думать, что большие двигатели практически всегда это просто «убийцы» бензина, не всегда это так. Простой пример – есть два автомобиля Nissan Almera (1.6 литра, автомат) и Nissan Teana (2,5 литра, вариатор), расход у Nissan Almera практически такой же как и у Teana – 12 – 14 литров, а зимой Almera начала расходовать больше 14 литров, у Teana расход по бортовому компьютеру 13,1!

Перед покупкой автомобиля, почитайте о нем в интернете, не всегда расход топлива и объем двигателя прямо пропорциональны е зависимости

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector