0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что называется тепловыми двигателями

Что называется тепловыми двигателями

Тепловой двигатель – устройство преобразующее внутреннюю энергию топлива в механическую энергию. Основные части теплового двигателя: нагреватель, рабочее тело и холодильник. Чтобы получить полезную работу, необходимо сделать работу сжатия газа меньше работы расширения. Для этого нужно, чтобы каждому объёму при сжатии соответствовало меньшее давление, чем при расширении. Поэтому газ перед сжатием должен быть охлажден.
Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T1 температурой нагревателя.’

Рассмотрим это на примере идеальной тепловой машины.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т1 и отдает некоторое количество теплоты Q1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q1 превращается в работу, а только некоторая ее часть

Другая часть теплоты Q2 передается телу с более низкой температурой (Т2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q2теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т1 > Т2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т1 = Т2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину, которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q1 – Q2)/Q1 = (Т1 – Т2)/Т1 (4.9)

или h = А/Q1; h = (Т1 – Т2)/Т1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Установленный на валу ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг шестерни. Его грани при этом скользят по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре.

Такая конструкция позволяет осуществить 4-тактный цикл без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами.

Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.

Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: r: R = 2: 3, которые устанавливают на автомобилях, лодках и т.п. Масса и габариты двигателя Ванкеля в 2-3 раза меньше соответствующих им по мощности двигателей внутреннего сгорания обычной схемы.

Воздух сначала поступает в цилиндр, сжимается и нагревается до высокой температуры. В раскаленный воздух с помощью форсунки впрыскивается самовоспламеняющееся и быстро сгорающее топливо, за счет чего мотор и начинает работать. Для таких двигателей необходимо специальное дизельное топливо. Из уроков физики все мы знаем, что тепловая энергия может преобразовываться в механическую. Именно это и происходит, когда в цилиндре двигателя сгорает топливо. Тепло, превращаясь в механическую работу, начинает двигать поршень, который в цилиндре двигается возвратно-поступательно. Коленчатый вал, связанный с поршнем при помощи шатуна, вращается.

Во время работы, поршень то приближается, то удаляется от коленчатого вала. Когда эти две детали сближаются, то в цилиндр поступает горючая смесь. При движении цилиндра в обратную сторону, в нем увеличивается давление. Сжатая горючая смесь в этот момент готова к сгоранию, едва стоит вспыхнуть искре, как смесь легко воспламеняется и выделяет газы, которые нужны для того, чтобы привести мотор в движение. Цилиндр соединен с трубопроводом, через который из двигателя выбрасываются отработанные газы.

Одно движение поршня к коленчатому валу или обратно называется ходом. Если за четыре хода поршня вал сделает два оборота вокруг своей оси, значит, закончился так называемый рабочий цикл. Двигатель, рабочий цикл которого совершается за два оборота коленчатого вала, называется четырехкратным. Существуют также и двукратные двигатели. Рабочий цикл у них совершается за два хода поршня и за один оборот коленчатого вала. В автомобильных моторах такие двигатели практически не применяются, зато их широко используют для мотоциклов.

Читать еще:  Что такое контрактный двигатель кпп

Чем сильнее будет давление на поршень при сгорании горючей смеси, тем больше мощность двигателя. Поэтому выгодно увеличивать степень сжатия в двигателе. В этом случае из той же порции топлива получается больше полезной работы. Многие автолюбители пытаются самостоятельно отрегулировать двигатель так, чтобы расходовать меньше топлива, но при этом не терять мощности. Но увлекаться этим не следует, поскольку при сильном увеличении степени сжатия горючая смесь сгорает слишком быстро (этот процесс называется детонация), что вызывает неустойчивую работу двигателя. При этом в работающем двигателе слышен стук, мощность значительно снижается, а из глушителя идет черный дым.

Тест по физике Тепловые двигатели для 8 класса

Тест по физике Тепловые двигатели для 8 класса с ответами. Тест включает в себя 2 варианта, в каждом варианте 7 заданий с выбором ответа.

1 вариант

A1. Тепловыми двигателями называют машины, в которых

1) внутренняя энергия топлива превращается в тепло окружающей среды
2) механическая энергия превращается в энергию топлива
3) тепло окружающей среды превращается в механи­ческую энергию
4) внутренняя энергия топлива превращается в ме­ханическую энергию

А2. Цикл двигателя внутреннего сгорания состоит из

1) впуска, выпуска
2) нагревания, рабочего хода
3) впуска, сжатия, рабочего хода, выпуска
4) впуска, нагревания, рабочего хода, выпуска

А3. В состав теплового двигателя не входит

1) нагреватель
2) рабочее тело
3) холодильник
4) турбина

А4. В тепловом двигателе нагреватель

1) отдаёт часть энергии рабочему телу, часть энергии холодильнику
2) получает всю энергию от рабочего тела
3) получает часть энергии рабочего тела
4) отдаёт всю энергию холодильнику

А5. Коэффициент полезного действия теплового двигате­ля определяется

1) только величинами полезной работы и энергии, полученной нагревателем
2) количеством теплоты, полученной от нагревателя
3) только количеством теплоты, отданной холодильнику
4) только величиной полезной работы

А6. Тепловой двигатель получает от нагревателя энергию, равную 7 кДж и отдаёт холодильнику 4,5 кДж. КПД такого двигателя равен

А7. КПД теплового двигателя равен 30%. Двигатель по­лучает от нагревателя количество теплоты 10 кДж и совершает работу, равную

1) 7 кДж
2) 300 кДж
3) 3 кДж
4) 5 кДж

2 вариант

A1. В двигателе внутреннего сгорания

1) энергия твёрдого топлива преобразуется в механи­ческую энергию снаружи двигателя
2) механическая энергия преобразуется в энергию топлива внутри двигателя
3) энергия жидкого и газообразного топлива преобразу­ется в механическую энергию внутри самого двигателя
4) механическая энергия поршня преобразуется в энергию топлива снаружи двигателя

А2. Тепловой двигатель состоит

1) из нагревателя и холодильника
2) из нагревателя, рабочего тела и холодильника
3) из впуска, сжатия, рабочего хода, выпуска
4) из зажигания и рабочего тела

А3. К тепловым двигателям не относится

1) двигатель внутреннего сгорания
2) паровая турбина
3) реактивный двигатель
4) ядерный ускоритель

А4. В тепловом двигателе холодильник

1) получает всю энергию, переданную нагревателем, и передаёт часть её рабочему телу
2) получает часть энергии нагревателя и передаёт всю её рабочему телу
3) получает часть энергии, переданной нагревателем рабочему телу
4) отдаёт всю энергию нагревателю

А5. Коэффициент полезного действия теплового двигате­ля равен отношению

1) затраченной работы к энергии, полученной от нагревателя
2) энергии, полученной от нагревателя, к полезной работе
3) полезной работы к постоянной теплового двигателя
4) полезной работы к энергии, полученной от нагревателя

А6. КПД теплового двигателя равен 40%. Двигатель по­лучает от нагревателя количество теплоты 10 кДж и совершает работу, равную

1) 75 кДж
2) 40 кДж
3) 2,5 кДж
4) 4 кДж

А7. Тепловой двигатель получает от нагревателя количе­ство теплоты 1,5 кДж и отдаёт холодильнику количе­ство теплоты 0,5 кДж. КПД данного теплового двига­теля равен

Ответы на тест по физике Тепловые двигатели для 8 класса
1 вариант
А1-4
А2-3
А3-4
А4-1
А5-1
А6-3
А7-3
2 вариант
А1-3
А2-2
А3-4
А4-3
А5-4
А6-4
А7-2

Тепловой двигатель

Теплово́й дви́гатель — тепловая машина, использующая теплоту от внешних источников (двигатель внешнего сгорания) или получаемую при сгорании топлива внутри двигателя (в камере сгорания или цилиндрах двигателя внутреннего сгорания) для преобразования в механическую энергию (поступательное движение либо вращение выходного вала). В соответствии с законами термодинамики, такие двигатели имеют коэффициент полезного действия меньше единицы, что означает неполное преобразование теплоты в механическую энергию. Смотря по конструкции двигателя, от 40 до 80 процентов поступающей (или выделяющейся внутри) энергии покидает машину в виде низкотемпературной теплоты, которая в ряде случаев используется для обогрева салона (наземный транспорт), жилых зданий и сооружений (для неподвижных стационарных двигателей), либо просто выбрасывается в атмосферу (авиационные двигатели, маломощные двигатели ручного инструмента, лодочных моторов и подобные). В таких случаях говорят о коэффициенте использования тепла топлива, который выше КПД самого двигателя [1] .

Важным аспектом любого теплового двигателя является вид и количество потребляемого им топлива, а также обусловленное этим загрязнение окружающей среды. Паровые турбины, преобразующие теплоту атомного реактора и солнечные тепловые станции топлива не сжигают, остальные же зависят от имеющихся энергоносителей, которые во многих случаях транспортируются издалека. Совокупность имеющихся в государстве тепловых двигателей (преобразующих энергию для вторичных двигателей, обычно электрическую) мест добычи топлива и транспортной инфраструктуры для его транспортировки называется топливно-энергетическим комплексом. Тепловые двигатели являются первичными, в отличие от вторичных (электрические, гидромоторы, и другие, получающие энергию от первичных) [2] .

Читать еще:  Что такое бесколлекторный двигатель для автомоделей

Содержание

  • 1 Теория
  • 2 Циклы тепловых двигателей
  • 3 Типы тепловых двигателей
    • 3.1 Двигатель внешнего сгорания
      • 3.1.1 Паровая машина
      • 3.1.2 Паровая турбина
      • 3.1.3 Двигатель Стирлинга
    • 3.2 Двигатель внутреннего сгорания
      • 3.2.1 Поршневой двигатель внутреннего сгорания
      • 3.2.2 Газовая турбина
      • 3.2.3 Реактивный двигатель
      • 3.2.4 Другие типы
    • 3.3 Твёрдотельные двигатели
    • 3.4 Атмосфера и гидросфера Земли
  • 4 Примечания
  • 5 Ссылки

Теория [ править | править код ]

Работа, совершаемая двигателем, равна:

A = Q H − | Q X | -left|Q_right| >, где:

  • Q H >— количество теплоты, полученное от нагревателя,
  • Q X >— количество теплоты, отданное охладителю.

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: η = | Q H | − | Q X | | Q H | = 1 − | Q X | | Q H | right|-left|Q_right|>right|>>=1-right|>right|>>>

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя( T H > ) и холодильника( T X > ):

η K = T H − T X T H = 1 − T X T H =-T_ over T_>=1- over T_>>

Однако, смотря по устройству двигателя, его теоретический КПД может быть меньше такого для цикла Карно. Так, для наиболее распространённого двигателя Отто, работающего по циклу Отто, теоретический КПД циклла составляет:

η = 1 − 1 n k − 1 >>>, где:

  • n = V 1 / V 2 /V_<2>>— степень сжатия,
  • k — показатель адиабаты.

Так называемый индикаторный КПД меньше теоретического, что показывает несовершенство осуществляемого цикла (отличие индикаторной диаграммы от теоретической ввиду потерь теплоты в стенки, отличного от нуля времени нагрева газа, наполнения и очистки цилиндра).

В свою очередь, эффективный КПД (учитывающий все потери, до выходного вала) ещё меньше на сумму механических потерь и потерь на привод систем двигателя (масляный насос, системы газораспределения, охлаждения и другие — в зависимости от устройства).

Циклы тепловых двигателей [ править | править код ]

Почти любая спроектированная конструкция теплового двигателя использует термодинамический цикл, показывающий изменение состояния рабочего тела. Это не относится к твердотельным двигателям, у которых меняется состояние конструкции двигателя, а не газа или жидкости внутри него. Наиболее широко известны цикл Ренкина, регенеративный цикл (паровые машины), классический цикл Отто, цикл Дизеля.

Типы тепловых двигателей [ править | править код ]

Двигатель внешнего сгорания [ править | править код ]

Такие двигатели получили распространение раньше, ввиду неприхотливости к виду топлива, более простому устройству, ненужности в ранних вариантах (паровая машина) систем запуска, зажигания, охлаждения. Дали мощный импульс индустриализации, поскольку с их помощью были механизированы шахты, швейные и другие фабрики, затем транспорт (железная дорога). Улучшенные новые схемы таких двигателей обеспечивают мир большей частью вырабатываемой электроэнергии (ТЭС, АЭС, ТЭЦ, солнечные электростанции с нагревом котла). Новейшие модели паровозов до сих пор имеют применение ввиду простоты и потреблению древесной пыли в качестве топлива. Некоторые (двигатель Стирлинга) получили применение в космических кораблях.

Паровая машина [ править | править код ]

Является наиболее старым тепловым двигателем, первые конструкции которого относятся к XVII веку. Использовалась вначале исключительно в стационарном применении (насосы для рудничных вод, привод вагонеток), затем была установлена на транспортные средства: паровоз, пароход, паромобиль. Имеет широкий диапазон рабочих скоростей с умеренным КПД (ранние версии около 4%, наиболее поздние 12..14% [3] .

Паровая турбина [ править | править код ]

Иначе: турбозубчатый агрегат (ТЗА). Получила распространение вначале на военных кораблях, взамен паровых машин. Имея значительно меньшие размеры, турбина позволила улучшить скоростные и уменьшить массогабаритные показатели, при снижении экономичности на частичных нагрузках. В настоящее время имеет широчайшее применение на тепловых и атомных электростанциях, где хороший КПД паровых турбин поддерживается за счёт высоких показателей (температура, давление) пара и режима работы агрегата, близкого к максимальной мощности.

Двигатель Стирлинга [ править | править код ]

Поршневой двигатель с утилизацией внешней теплоты, без потери рабочего тела, которое остаётся внутри двигателя. Имеет наивысший КПД среди двигателей внешнего сгорания, при умеренной единичной мощности и высокой стоимости. Применение: космические аппараты [4] , подводные лодки [5] .

Двигатель внутреннего сгорания [ править | править код ]

Более поздние и сложные конструкции тепловых двигателей, обладающие высокими удельными массовыми показателями, почему получили основное применение на транспорте. В силу интенсивного рабочего процесса имеют меньшую теплопередачу в стенки, и потому более высокий термический КПД. Единственные двигатели, обеспечивающие полёты, включая космические (вывод на орбиту).

Поршневой двигатель внутреннего сгорания [ править | править код ]

Наиболее распространённый (по числу) тепловой двигатель. Устанавливается на многочисленные транспортные средства, также на локомотивы, электростанции умеренной мощности, морские суда и корабли. Особенностью является хороший КПД в широких диапазонах мощности. Требует трансмиссии (кроме дизель-молотов и свободно-поршневых генераторов газа).

Газовая турбина [ править | править код ]

Иначе: газотурбинный двигатель. Имеет сравнительно узкий диапазон мощностей с достаточным КПД, зато более высокие массогабаритные показатели. Отдаёт крутящий момент с достаточно большими оборотами, часто требует редуктора, системы запуска, зажигания, и других. Использовался в турбовинтовых двигателях самолётов, широко применяется в мощных электростанциях, силовых установках кораблей и быстроходных судов (судно на воздушной подушке, глиссер, судно на подводных крыльях).

Реактивный двигатель [ править | править код ]

Одновременно является движителем (отдаёт мощность в виде поступательного движения газа). Применяется в авиации (реактивный самолёт) и космонавтике (химический ракетный двигатель). Способен работать в безвоздушном пространстве (в камеру сгорания подаётся как топливо, так и окислитель).

Другие типы [ править | править код ]

Под классификацию тепловых двигателей внутреннего сгорания попадает огнестрельное оружие [6] , дизель-молот и свободнопоршневой генератор газа.

Твёрдотельные двигатели [ править | править код ]

Такие двигатели используют твёрдый материал (вещество в твёрдой фазе) в качестве рабочего тела. Работа совершается при изменении формы рабочего тела. Позволяют использовать малые перепады температур. [7]

  • Johnson thermoelectric energy converter (JTEC) — использует электрохимическое окисление и восстановление водорода в паре ячеек, реализует тепловой цикл, приближенный к циклуДжона Эрикссона[8]
  • металлические двигатели, использующие изменение формы различных твердых сплавов из-за температуры, например составов с памятью формы или теплового расширения твердых тел [9]

Атмосфера и гидросфера Земли [ править | править код ]

Эти оболочки планеты в свою очередь являются грандиозными тепловыми двигателями, работающими на перепаде температур по высоте атмосферы, глубине воды, и широте местности. Получаемая механическая работа при движении воздуха и воды, в свою очередь, переходит в тепло и рассеивается, хотя ничтожная часть её используется для привода многочисленных ветроэлектростанций и станций, работающих на температурном градиенте воды.

Двигатели

Short Description
Description

Усвоить, что называют тепловым двигателем, какие превращения энергии в нем происходят при работе, что такое КПД, что его значение всегда меньше 100 %. Знать формулу для расчета КПД теплового двигателя.

Развитие техники во многом зависит от умения как можно более полно использовать те запасы внутренней энергии, которые содержаться в топливе. Использовать внутреннюю энергию – значит совершить за счет неё полезную работу, например поднять груз, перевезти вагоны и т. п. А это, в свою очередь, означает, что внутреннюю энергию необходимо превратить в механическую. Как это сделать? Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.

Существует несколько видов тепловых двигателей: 1.

двигатель внутреннего сгорания,

паровая и газовая турбины,

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве. Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя – КПД. Отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя, называют коэффициентом полезного действия двигателя

Q1  Q2 η= Q *100% 1

7. 8. 9. 10. 11. 12. 13. 14.

Вопросы для контроля уровня усвоения УМ Какую роль сыграли тепловые машины в развитии промышленности и транспорта? Приведите примеры. В каких устройствах используются тепловые двигатели? Приведите примеры. На какие два типа подразделяются все тепловые машины? Какую задачу решают тепловые двигатели? Какую задачу решают холодильные установки? Относится ли ружье к тепловому двигателю? Относится ли ружье к ДВС? Какие превращения энергии происходят при выстреле из ружья? Как определить КПД ружья? Почему тепловой двигатель использует лишь некоторую часть той энергии, которая выделяется при сгорании топлива? Какие параметры тепловой машины определяют ее КПД? Сравните КПД паровой машины, ДВС, дизельного двигателя, паровой турбины и реактивной (ракетной) установки. Сделайте вывод. Отражается ли на КПД явление неполного сгорания топлива в ДВС? При каких условиях это происходит? Влияет ли работа на “обедненном” топливе на КПД ДВС?

Проблемы  Почему автомобили на природном газе расходуют его на 100 км пути больше, чем бензина, ведь качество этого топлива гораздо выше?  Почему газовое топливо считается более качественным, чем бензин?  Почему дизельные двигатели имеют больший КПД, чем бензиновые?  От каких физических параметров зависит “сила тяги” дымовой трубы? Проекты  Предложите конструктивные изменения в устройство паровоза, повышающие его КПД.  Почему гоночные машины и экспериментальные самолеты используют в качестве топлива водород? Предложите конструктивные изменения двигателя, который необходимо перевести на “гремучий газ”.

Домашнее задание А) § 21-24 + задание: Подготовить сообщения по темам: предложенным на стр.57 задание №5 или следующие – Из истории создания: — авиационного ДВС. — первого трактора с ДВС. — использование ДВС на железнодорожном транспорте. -применение ДВС на водном транспорте. -Или тему возьмите из карточки № 2

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector