0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что характеризует коэффициент полезного действия двигателя

Что значит «коэффициент полезного действия». КПД двигателя внутреннего сгорания

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД ), с условным обозначением. Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P 2 имеет следующий вид:

P 2 =P 1 -ΔP эл1 -ΔP эл2 -ΔP м (1)

где, P 2 — полезная, а P 1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P 1 =ΔP+P 2 (2)

Из этой формулы видно, что P 1 расходуется на P 2 , а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P 2 и P 1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P 2 =U 2 *J 2 *cosφ 2 , (4)

где U 2 и J 2 — вторичные напряжение и ток нагрузки, а cosφ 2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P 1 =ΔP+P 2 , формула (3) приобретает следующий вид:

Электрические потери первичной обмотки ΔP эл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

(6)

(7)

где r mp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки, который равен:

где J 2н — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

Если подставить данное равенство в формулу (5), то получится следующее выражение:

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P 2 /P 1)+ΔP м +ΔP эл1 +ΔP эл2 , (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте , либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Ни одно выполняемое действие не проходит без потерь — они есть всегда. Полученный результат всегда меньше тех усилий, которые приходится затрачивать для его достижения. О том, насколько велики потери при выполнении работы, и свидетельствует коэффициент полезного действия (КПД).

Что же скрывается за этой аббревиатурой? По сути дела, это коэффициент эффективности механизма или показатель рационального использования энергии. Величина КПД не имеет каких-то единиц измерения, она выражается в процентах. Определяется этот коэффициент как отношение полезной работы устройства к затраченной на его функционирование. Для вычисления КПД формула расчета будет выглядеть таким образом:

КПД =100* (полезная выполненная работа/затраченная работа)

В различных устройствах для расчета такого соотношения используются разные значения. Для электрических двигателей КПД будет выглядеть как отношение совершаемой полезной работы к электрической энергии, полученной из сети. Для будет определяться как отношение полезной совершаемой работы к затраченному количеству теплоты.

Для определения КПД необходимо, чтобы все разные и работа выражались в одних единицах. Тогда возможно будет сравнивать любые объекты, например генераторы электроэнергии и биологические объекты, с точки зрения эффективности.

Как уже отмечалось, из-за неизбежных потерь при работе механизмов коэффициент полезного действия всегда меньше 1. Так, КПД тепловых станций достигает 90%, у двигателей внутреннего сгорания КПД меньше 30%, КПД электрического трансформатора составляет 98%. Понятие КПД может применяться как к механизму в целом, так и к его отдельным узлам. При общей оценке эффективности механизма в целом (его КПД) берется произведение КПД отдельных составных частей этого устройства.

Читать еще:  Что такое бензонасос для 4т двигателя

Проблема эффективного использования топлива появилась не сегодня. При непрерывном росте стоимости энергоресурсов вопрос повышения КПД механизмов превращается из чисто теоретического в вопрос практический. Если КПД обычного автомобиля не превышает 30%, то 70% своих денег, расходуемых на заправку топливом авто, мы просто выбрасываем.

Рассмотрение эффективности работы ДВС (двигателя внутреннего сгорания) показывает, что потери происходят на всех этапах его работы. Так, только 75% поступающего топлива сгорает в цилиндрах мотора, а 25% выбрасывается в атмосферу. Из всего сгоревшего топлива только 30-35% выделившегося тепла расходуется на выполнение полезной работы, остальное тепло или теряется с выхлопными газами, или остается в системе охлаждения автомобиля. Из полученной мощности на полезную работу используется около 80%, остальная мощность тратится на преодоление сил трения и используется вспомогательными механизмами автомобиля.

Даже на таком простом примере анализ эффективности работы механизма позволяет определить направления, в которых должны проводиться работы для сокращения потерь. Так, одно из приоритетных направлений — обеспечение полного сгорания топлива. Достигается это дополнительным распылением топлива и повышением давления, поэтому так популярны становятся двигатели с непосредственным впрыском и турбонаддувом. Тепло, отводимое из двигателя, используется для подогрева топлива с целью лучшей его испаряемости, а механические потери уменьшаются за счет использования современных сортов

Здесь нами рассмотрено такое понятие, как описано, что он собой представляет и на что влияет. Рассмотрена на примере ДВС эффективность его работы и определены направления и пути повышения возможностей этого устройства, а, следовательно, и КПД.

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели .

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А» и передаёт холодильнику количество теплоты Q 2

Коэффициент полезного действия

Полезное действие

Рассмотрим устройство, которое поднимает груз массы m на высоту H. В идеальном случае работа совершается только против силы тяжести. Таким образом, энергия, которую необходимо затратить для подъема груза, равна mgH. Но в реальности в любом устройстве наличествует сила трения; а также сила тяжести действует и на само устройство.

Рис. 1. Подъем груза через блок.

Таким образом, та энергия, которую необходимо затратить в идеальном случае, называется полезной работой, а вся энергия, необходимая для выполнения задачи – затраченной работой.

Что такое коэффициент полезного действия

Отношение полезной работы к затраченной – это коэффициент полезного действия. Для двигателя внутреннего сгорания, на котором работает большая часть автомобилей, КПД колеблется в пределах 20-25%. Часть энергии тратится на нагрев деталей, часть – на преодоление трения, вдобавок к этому не всё топливо сгорает, а еще большая доля тепла выходит с выхлопными газами. Для сравнения КПД электромобиля составляет примерно 94%.

Рис. 2. Потери ДВС.

Формула коэффициента полезного действия в общем виде выглядит так:

где А – полезная работа, а Q – вся энергия, затраченная на выполнения задачи

Читать еще:  Двигатель x16szr технические характеристики

КПД теплового двигателя циклической машины определяется по формуле:

где $Q_1 – Q_2$ – разность полученного тепла и тепла, отданного холодильнику.

Максимальный КПД теплового двигателя, работающего по циклу Карно, равен:

где $T_1$ – температура нагревателя, а $T_2$ – холодильника.

Рис. 3. Цикл Карно.

В случае электродвигателя КПД можно найти по формуле:

где P_2 – полезная мощность, затраченная на преобразование электрической энергии в механическую, а P_1 – общая мощность двигателя.

Задачи

  • В чайник налили 1,5 л холодной воды, ее температура – 283˚ К. Чтобы довести ее до кипения, понадобилось 6 минут. Сила тока, потребляемая чайником – 11 А. Напряжение в электрической сети – 228 В. Рассчитать КПД чайника.

Решение

Полезной работой в этом случае будет энергия, которая необходима для разогрева воды от 283˚ К до 373˚ К. Затраченной работой будет мощность чайника, умноженная на время закипания. Поэтому формулу КПД чайника запишем так:

Так как $m = rho V$, а $P = UI$, то окончательная формула КПД чайника будет выглядеть так:

Подставив в нее данные из условия, получим, что $eta = 0,63$. Или в процентах – 63%.

  • С помощью механического устройства груз массой 9 кг подняли на 20 м. КПД устройства – 70%. Найти силу, которую необходимо приложить к устройству, чтобы поднять груз.

Решение

И $F = <90 over 0,7>= 130 Н$ – сила, которую необходимо приложить к устройству.

Что мы узнали?

В ходе урока были разобраны два важнейших понятия – полезная работа и затраченная работа, было дано определение коэффициента полезного действия, приведена его общая формула, а также ее частные вариации для различных устройств. В заключении урока разобраны две задачи.

Мощность и КПД центробежных насосов

Здравствуйте, читатели блога nasos-pump.ru

Продолжим рубрику «Общее» и рассмотрим такие понятия как коэффициент полезного действия (КПД) и мощность центробежных насосов. Электрический центробежный насос состоит из привода – электрического двигателя и насосной части. Двигатель – это электрическая машина, которая преобразовывает энергию электрического поля в энергию вращения на валу. Мощность, которая подводиться к валу насоса, называется подводимой. Она определяется как произведение крутящего момента на валу насоса к его угловой скорости Центробежный насос это – гидравлическая машина, в которой подводимая вращательная энергия от двигателя преобразуется в энергию потока жидкости. Подбор насосов под конкретные цели и задачи производится по каталогам. В результате выбора учитываются такие показатели как напор и расход, потребляемая мощность и КПД насоса, а также его кавитационная характеристика. Выбранный насос должен работать с высоким КПД, без кавитации в требуемом диапазоне напора и расхода. Из нескольких выбранных вариантов предпочтение отдается тем насосам, которые потребляют меньшую мощность, имеют более высокий КПД, обладают меньшим значением допустимого кавитационного запаса и имеют меньший вес и габаритные размеры.

Между мощностью, потребляемой электрическим двигателем от электрической сети, мощностью на валу двигателя и гидравлической мощностью, насоса существует прямая связь. В процессе производства насосов на заводе изготовителе используются следующие обозначения этих видов мощности.

P1 (кВт) Входная электрическая мощность насосов – это мощность, которую электрический двигатель насоса забирает от электрической сети питания.

P2 (кВт) Мощность на валу электрического двигателя – это мощность, которую двигатель передает на вал насоса. Соотношение входная электрическая мощность насоса P1 равна мощности на валу электрического двигателя P2, разделённой на КПД электрического двигателя.

P3 (кВт) Входная мощность насоса равна мощности P2, с условием, что муфта соединяющая вал насоса и вал электрического двигателя не рассеивает энергию.

P4 (кВт) Гидравлическая или полезная мощность насоса. Это та мощность, которая получается в результате работы насоса в виде расхода и напора жидкости.

Как это выглядит наглядно, можно посмотреть на (Рис. 1).

Коэффициент полезного действия

Коэффициент полезного действия двигателя центробежного насоса представляет собой отношение полезной мощности к потребляемой. Обозначается он буквой η (эта). Схематически все это изображено на (Рис. 2)

КПД двигателя, никогда не будет больше единицы (100%) ни при каких условиях, ибо «вечного двигателя» еще не изобрели, а все существующие приводы имеют потери. Потребляемая мощность P1 двигателя больше на величину возникающих в электрическом двигателе механических и тепловых потерь Pvдв. (Рис. 2).

Коэффициентом полезного действия насоса как было сказано выше, называется отношение гидравлической мощности к подводимой мощности на валу насоса, а их разность указывает на потери мощности в насосе.

Потери мощности в центробежном насосе также складываются из нескольких составляющих, а именно: гидравлических, механических и объёмных потерь Рvнас. (Рис. 2). Общий КПД насосов представляет собой произведение коэффициентов полезного действия объемного, гидравлического и механического. КПД насоса характеризует степень конструктивного его совершенства, как в механическом, так и гидравлическом отношении.

Потери гидравлической мощности в насосе состоят из потерь на преодоления сопротивлений (трение) в рабочем колесе и корпусе во время движения жидкости от всасывающего патрубка, к напорному патрубку и вихревых потерь. Потери на преодоление сопротивления трения очень сильно зависят от конструктивных особенностей насосов размеров их проточной части, качества обработки (шероховатости) стенок и поверхностей насоса. Данные потери пропорциональны квадрату скорости течения жидкости. Возникающие в насосе вихревые потери зависит от многих факторов. Очень большие вихревые потери появляются при внезапном расширении сечения или резком повороте потока жидкости. Возникают вихревые потери вследствие отрыва потока от поверхности рабочего колеса или при режимах работы насоса вне предела его рабочей характеристики. Гидравлический КПД насосов находится в пределах ηг= 0,85…0,96.

Н – напор создаваемый насосом;

h – потери напора внутри насоса

Читать еще:  Впускной коллектор двигателя неисправности

Механические потери обусловлены трениями, происходящими в опорах радиальных и осевых подшипников, в механическом торцевом уплотнении, а также потери на трение о рабочую жидкость возникающие при вращении рабочего колеса и вала насоса. Механические потери также очень сильно зависят от конструкции, качества изготовления и типоразмера насоса. Механический KПД насосов находится в пределах ηм= 0,95…0,98.

Р – мощность, на валу насоса;

Ртр – потери мощности на преодоление сопротивления трения.

Объемные потери в основном возникают за счет перетекания жидкости из области с высоким давлением в область низкого давления, через зазоры между рабочим колесом и диффузором или неподвижными деталями корпуса насоса. Например, в центробежном насосе часть жидкости из спирального отвода в обход рабочего колеса перетекает обратно во всасывающий патрубок, при этом она не поступит в напорный патрубок, хотя на нее уже была затрачена энергия. КПД ηо у современных центробежных насосов составляет от 0,96 до 0,98.

Q – подача насоса;

Qк – расход жидкости проходящий через рабочее колесо насоса.

Произведение ηгмо и определяет общий КПД насоса. Изменение величины любого из сомножителей приводит к изменению величины и общего КПД насоса. Эта зависимость задается функцией от подачи в характеристике насоса, а на графиках изображается в виде кривой η=f(Q). Полезную мощность насоса Р (кВт) можно также определяют как произведение весовой подачи (Q) на напор (H) по формуле:

pg – удельный вес жидкости (Н/м 3 );

Q – объемная подача насоса (м/с);

H – напор насоса в (м).

На (Рис. 3) находятся рабочие характеристики серии насосов, а также зависимость характеристики MPSH и характеристики КПД от расхода.

Характеристика насоса и КПД

Красным прямоугольником выделен участок кривой с самым оптимальным КПД. В каталогах заводов производителей насосного оборудования указывается рабочая характеристика насоса, характеристика подпора NPSH (net positive suction head -кавитационный запас) и характеристика коэффициента полезного действия. КПД насосов очень сильно зависит от режима их работы и конструктивных особенностей, типов, размеров и может изменяться в очень широком диапазоне. При работе в оптимальном режиме, КПД мощных центробежных нефтяных насосов может достигать 92%, а малых насосов около 60% – 75%. КПД насосов с «мокрым» ротором колеблется от 5% до 54 % у высокоэффективных циркуляционных насосов. Мощность и КПД насосов в конечном итоге определяют затраты на электроэнергию в процессе их эксплуатации. Чем тщательнее подобрано насосное оборудование под заданные параметры тем оно эффективнее и, следовательно, менее затратно.

Какой КПД у электродвигателя

Содержание

  1. Какой КПД у электродвигателя: принцип расчёта
  2. Потери мощности — основные виды
  3. Магнитные, электрические и механические потери
  4. Изменение КПД двигателя

Современные модели электрических двигателей характеризуются высоким коэффициентом полезного действия (КПД). Тем не менее, работа двигателя любой модели сопровождается выделением теплоты в процессе преобразования электроэнергии в энергию механическую. Локальные потери мощности могут происходить:

  • в деталях из стали;
  • в обмотках.

Показатели мощности в результате неизбежно снижаются, не достигая максимально возможных. В этой статье перечислены основные факторы, от которых зависит, какой КПД у электродвигателя.

Какой КПД у электродвигателя: принцип расчёта

Существует несколько методов определения КПД электродвигателя. Если использовать для расчета показатели полезной и потребляемой мощности электродвигателя, то их соотношение и составит искомую величину, которая может быть:

  • 0,75-0,9 (если мощность агрегата не выше 100 кВт);
  • до 0,97 (для более мощных моделей).

Существует также косвенный метод расчета коэффициента полезного действия, который основан на определении суммарных потерь мощности.

Потери мощности — основные виды

Значимые потери мощности, от которых зависит величина КПД электродвигателя, делятся на следующие группы:

  • магнитные (относятся к постоянным);
  • электрические (постоянными не являются);
  • механические (постоянные).

Помимо основных, наблюдаются также добавочные потери (например, в полюсных наконечниках), которые сложно поддаются точному расчету. Незначительный уровень таких потерь позволяет принять их сумму условно равной 0,5-1 % и учитывать это значение при расчете общей величины КПД.

Остановимся подробнее на основных разновидностях потерь мощности.

Магнитные, электрические и механические потери

Значение магнитных потерь, которые происходят в результате перемагничивания якорного сердечника, складывается из показателей потерь от вихревых токов в стали и от гистерезиса. От толщины стальных листов, из которых изготовлен сердечник, и качества изоляции может зависеть исходная величина. Также на объем магнитных потерь влияет частота, с которой происходит перемагничивание.

Электрические потери, показатели которых меняются с изменением уровня нагрузки оборудования, происходят:

  • в якорных обмотках;
  • в щетках;
  • в цепях возбуждения.

Основной причиной механических потерь является трение разных видов. Это может быть трение в подшипниках, а также трение щеток о контактные кольца и коллектор, трение ротора и пр. Потери также возникают в процессе вентиляции. Механические и электрические потери воздействуют на эффективность эксплуатируемого двигателя в наибольшей степени.

Изменение КПД двигателя

В процессе работы асинхронного двигателя значение КПД не остается постоянной величиной. Показатели меняются, быстро достигая пиковой величины (при нагрузке, составляющей примерно 80% от номинальной) и далее постепенно снижаясь. Это объясняется существенным ростом электрических потерь, который наблюдается при нагрузках.

Чтобы повысить среднюю величину КПД, необходимо снизить потери мощности. Для этого существует ряд возможностей:

  • механические потери сокращаются, если использовать современные материалы с более совершенными эксплуатационными характеристиками;
  • электрические потери будут ниже, если двигатель работает при малых скольжениях.

Поскольку коэффициент полезного действия является определяющим параметром для экономичности эксплуатации оборудования, в процессе разработки новых моделей электродвигателей конструкторы ставят своей целью минимизировать неизбежные потери мощности и добиться повышения КПД.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector