Частота звука работы двигателя
Система имитации звука двигателя
Почувствовать себя за рулем мощного автомобиля вам позволит система имитации звука двигателя. В отличие от активной выпускной системы данная система воспроизводит желаемый звук двигателя через акустическую систему автомобиля. Отношение к системе имитации звука двигателя неоднозначное – часть водителей принципиально против фальшивого звучания мотора, другие, наоборот, от нового звука получают удовольствие.
Система Active Sound Design (ASD) применяется на некоторых моделях автомобилей BMW, Renault с 2011 года. В этой системе блок управления создает дополнительное звучание, отсутствующее в исходном звуке двигателя. Это звучание транслируется через динамики акустической системы и объединяется с оригинальными звуками двигателя, чем и достигается желаемый результат.
Дополнительные звуки изменяются в зависимости от режима движения автомобиля. Входными сигналами для блока управления выступают частота вращения коленчатого вала, скорость движения, положение педали акселератора, текущая передача коробки передач.
Система Active Sound Control (ASC) от Lexus отличается от предыдущей системы. В этой системе микрофоны, установленные под капотом автомобиля, воспринимают звуки двигателя. Звук двигателя преобразуется электронным эквалайзером и транслируется акустической системой. Таким образом, оригинальный звук двигателя в салоне автомобиля становится более динамичным и объемным.
При работе системы на передние динамики выводится звук работающего двигателя. Частота звучания изменяется с частотой вращения двигателя. Задние динамики, при этом, транслируют мощный низкочастотный звук выхлопа. Система ASC работает только в определенных режимах работы автомобиля и автоматически выключается при движении в обычном режиме. К недостаткам системы можно отнести то, что микрофоны под капотом захватывают шумы от дорожного покрытия.
Система имитации звука двигателя от Audi объединяет блок управления и возбудитель. В блоке управления сохранены различные звуковые файлы, которые в зависимости от режима движения (нагрузка, число оборотов, скорость) воспроизводятся возбудителем.
Возбудитель создает акустические колебания в твердом материале (лобовое стекло и кузов), которые передаются воздуху в салоне автомобиля. Возбудитель устанавливается внизу лобового стекла на резьбовом пальце. По своей сути это громкоговоритель, в котором роль мембраны выполняет лобовое стекло. Система имитации звука двигателя позволяет слышать звук двигателя в салоне даже при хорошей шумоизоляции.
Имитация звука двигателя используется в акустических системах предупреждения электрических автомобилей, различных гибридных автомобилей. В таких автомобилях для предупреждения пешеходов используются различные звуковые сигналы и (или) имитация звука двигателя.
Европейский проект Acoustic Vehicle Alerting Systems (AVAS) для информирования пешеходов и других уязвимых участников движения (например, велосипедистов) рекомендует производителям электромобилей (гибридов) генерировать непрерывный звуковой сигнал на скорости от 0 до 20 км/ч и при движении задним ходом. Этот звук должен быть похож на звук автомобиля того же класса, оснащенного двигателем внутреннего сгорания.
Что такое частота?
Частота переменного тока (ac) — это количество синусоидальных колебаний переменного тока в секунду. Частота — это количество изменений направления тока за секунду. Для измерения частоты используется международная единица герц (Гц). 1 герц равен 1 колебанию в секунду.
- Герц (Гц) = 1 герц равен 1 колебанию в секунду.
- Колебание = Одна полная волна переменного тока или напряжения.
- Полупериод = Половина колебания.
- Период = Время, необходимое для выполнения одного полного колебания.
Частота отражает повторяемость процессов. С точки зрения электрического тока частота — это количество повторений синусоиды или, другими словами, полного колебания, которое включает положительную и отрицательную составляющие.
Чем больше колебаний происходит в секунду, тем выше частота.
Пример. Если известно, что частота переменного тока равна 5 Гц (см. схему ниже), это означает, что его форма сигнала повторяется 5 раз за 1 секунду.
Частота обычно используется для описания работы электрооборудования. Ниже приведены некоторые наиболее распространенные диапазоны частот:
- Частота линии питания (обычно 50 Гц или 60 Гц).
- Частотно-регулируемые приводы: обычно используют несущую частоту 1–20 кГц.
- Звуковой диапазон частот: от 15 Гц до 20 кГц (диапазон человеческого слуха).
- Радиочастота: от 30 до 300 кГц.
- Низкая частота: от 300 кГц до 3 МГц.
- Средняя частота: от 3 до 30 МГц.
- Высокая частота: от 30 до 300 кГц.
Обычно цепи и оборудование предназначены для работы с постоянной или переменной частотой. Оборудование, рассчитанное на работу с постоянной частотой, при изменении частоты начинает работать неправильно. Например, двигатель переменного тока, рассчитанный на работу при 60 Гц, работает медленнее при частоте ниже 60 Гц или быстрее при частоте выше 60 Гц. Для двигателей переменного тока любое изменение частоты приводит к пропорциональному изменению частоты вращения двигателя. Другим примером является снижение частоты вращения двигателя на 5 % при снижении частоты сети на 5 %.
Порядок измерения частоты
Цифровой мультиметр с режимом частотомера может измерять частоту сигналов переменного тока со следующими функциями:
- регистрация МИН/МАКС значений, позволяющая записывать результаты измерений частоты за заданный интервал времени. Эта функция также применима к измерениям напряжения, тока и сопротивления.
- автоматический выбор диапазона, при котором прибор автоматически подбирает диапазон частот при условии, что частота измеряемого напряжения не выходит за пределы этого диапазона.
Параметры электросетей различаются в зависимости от страны. В США работа сети основана на высокостабильном сигнале с частотой 60 Гц, что соответствует 60 колебаниям в секунду.
Бытовые электросети в США получают питание от однофазного источника питания 120 В перем. тока. Напряжение в настенной розетке дома в США совершает синусоидальные колебания в диапазоне от 170 до −170 В, при этом истинное среднеквадратичное значение этого напряжения будет равно 120 вольт. Частота колебаний составляет 60 циклов в секунду.
Единица измерения получила название «герц» в честь немецкого физика Генриха Герца (1857–1894 гг.), который первым осуществил передачу и принятие радиоволн. Радиоволны распространяются с частотой одно колебание в секунду (1 Гц). (аналогично часы тикают с частотой 1 Гц)
Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.
Уменьшение аккустического шума преобразователя частот
В настоящее время преобразователи частоты устанавливаются в коммерческих зданиях для обеспечения управления системами и экономии расходов для система отопления, вентиляции и кондиционирования воздуха HVAC (Heating, Ventilating and Ai Conditioning). В зданиях, таких как больницы, школы и общежития, офисных и других зданиях, акустический шум, генерируемый электрическим оборудованием, может оказаться проблемой. Регулируемый преобразователь частоты может издавать акустический шум и создавать шум в двигателях.
Понимание причин акустического шума является первым требованием для решения проблемы его влияния. Ниже рассматриваются факторы, которые могут создавать акустический шум в преобразователе частоты и в подключенном к нему оборудовании. Также рассматриваются жесткость условий в различных установках, а также решения по ограничению или устранению проблем акустического шума.
Причины акустического шума
Наиболее очевидной разницей между подключением двигателя к линии переменного тока или к выходу преобразователя частоты является то, что преобразователь изменяет частоту питания, подаваемого на двигатель. Форма кривой изменения частоты, подаваемой на двигатель, является основной причиной шума двигателя. График напряжения более сложный, чем простая синусоида.
В преобразователях частоты с инвертором широтно-импульсной модуляции ШИМ, как в большинстве современных преобразователей, инвертор управляет подаваемым на двигатель напряжением, посылая на двигатель серии импульсов высокого напряжения (см. Рис. 1). Акустический шум производится искажением частоты. Импульсы могут вызывать резонанс в статоре двигателя или в ребрах охлаждения. Типовая частота этих импульсов, называемая несущей частотой, находится в слышимом звуковом диапазоне. Этот механический резонанс заставляет двигатель выступать в роли усилителя. Вибрация может создавать раздражающий высокий звук.
Для генерирования переменной частоты большинство преобразователей частоты с широтно-импульсной модуляцией ШИМ имеют частоту переключений от 2 до 6 кГц. Она находится в диапазоне, в котором человеческое ухо наиболее чувствительно, и где обычно обнаруживаются даже низкие уровни шума. Поскольку данный шум имеет высокую частоту, большинство людей считает его очень раздражающим. Высокочастотные шумы трудно маскировать и их слышно на некотором расстоянии от источника.
Другим источником шума является питание на входе в преобразователь частоты. В общем случае, нельзя услышать звук, когда ток течет по проводам питания. Это связано с тем, что слишком малое количество материала может вибрировать, а усилия не слишком велики. С другой стороны, трансформаторы могут создавать заметный жужжащий звук, так как их обмотки концентрируют магнитные поля, создаваемые током.
Рисунок 1. Форма кривой напряжения с широтно-импульсным модулированием ШИМ
Добавление контура фильтрации на входе регулируемого преобразователя частоты для уменьшения электрического шума в линии питания переменного тока может увеличить акустический шум. Это связано с тем, что основным устройством в таком фильтре является большая катушка. Концентрация магнитного поля, как в трансформаторе, может вызвать достаточную вибрацию в своих обмотках, чтобы создать заметный шум. Преобразователь частоты сам по себе является еще одним возможным источником акустического шума. Меняющиеся токи через преобразователь приводят к возникновению изменяющихся магнитных полей. Эти магнитные поля могут заставить резонировать металлические предметы, что приводит к возникновению акустического шума.
Акустический шум от линии питания переменного тока, фильтров на линиях входа или преобразователя частоты едва ли представляет собой проблему. Это оборудование обычно располагается в изолированном служебном помещении. Если шум нежелателен, существует ряд возможных методов борьбы с ним. С большой вероятностью стена или шкаф, на которых монтируется фильтр или преобразователь, усиливают шум. Звук можно существенно снизить за счет использования виброизоляторов между блоком и стеной или за счет монтажа блока на опоре на полу. Для особых случаев можно связаться с изготовителем преобразователя или фильтра на предмет наличия более бесшумного фильтра или других решений данной проблемы.
Однако акустический шум, создаваемый в двигателе, может быть намного более существенным и его следует рассмотреть более детально. Оптимальным решением было бы исключить частотный импульсный шум в выходном напряжении преобразователя частоты, но это невозможно без добавления пассивных компонентов на выходе преобразователя частоты.
Второй способ контроля акустического шума – сдвинуть частоту переключений из чувствительного диапазона либо вверх, либо вниз. Допускаемое преобразователем снижение частоты переключений ниже данного диапазона не является подходящим решением, так как была бы нарушена форма кривой тока и частоты и создание кривой близкой к синусоидальной форме было бы невозможным. Это означает, что способность управлять двигателем была бы существенно сокращена. Повышение частоты переключения рассматривается ниже.
Методы снижения шума
Ниже будут сравниваться четыре различных метода снижения шума двигателя:
1. Фиксированная высокая частота переключения.
2. Случайно выбираемая частота переключения.
3. Выходной индуктивно-емкостной фильтр.
4. Автоматическая модуляция частоты переключения.
Фиксированная высокая частота переключения
Фиксированная высокая частота переключения в диапазоне 12–20 кГц является традиционным способом уменьшения акустического шума в двигателе. Этот высокочастотный шум труднее обнаруживается ухом человека и, в отличие от низкочастотного, не сильно влияет на форму кривой. Однако у этого подхода имеются недостатки.
Основными недостатками являются:
• увеличение электромагнитных помех;
• увеличение риска повреждения изоляции двигателя;
• потери мощности, которые выделяются в виде тепла в преобразователе частоты;
• увеличение токов утечки при использовании более крупного фильтра электромагнитных помех .
Увеличенные электромагнитные потери могут потребовать более крупного и более дорогого фильтра электромагнитных помех. Он увеличивает стоимость преобразователя и увеличивает ток утечек. Ток утечки может привести к проблемам с изоляцией в двигателе и, кроме того, привести к опасности поражения электрическим током.
Рисунок 2. Индексированные потери на выходе
Высокие частоты переключения создают в преобразователе частоты дополнительное тепло, которое уменьшает срок службы преобразователя или требует установки переразмеренного преобразователя. Потери являются результатом искажений в кабелях двигателя при высоких частотах. Это означает, что если бы преобразователь работал на более низкой частоте переключения, он мог бы обслуживать двигатель при меньших затратах энергии или обслуживать более крупный двигатель. В инверторе преобразователя частоты частота переключения в районе 4 кГц гарантирует самые низкие потери в преобразователе частоты, а суммарный кпд самый высокий в диапазоне от 2,0 до 4,5 кГц (см. Рисунок 2).
Случайно выбираемая частота переключения
Случайно выбираемая частота переключения известна также как «белый шум». Частота переключения постоянно изменяется в пределах диапазона вокруг базовой частоты переключения. Такой подход не требует снижения номинальных параметров преобразователя. Основной недостаток данного метода – наведенный белый шум заставляет двигатель звучать так, как если бы был неисправен подшипник. Этот звук отличается от фиксированной частоты переключения, но может быть почти таким же раздражающим.
Выходной индуктивно-емкостной фильтр
На выходе преобразователя частоты может быть установлен индуктивно-емкостной фильтр. Этот фильтр создает напряжение с формой чистой синусоиды. Поскольку искажения устранены, исключен также и шум, наводимый на двигатель. Это означает, что работа двигателя в общем улучшена, поскольку в большинстве применений нет разницы между работой напрямую или работой с использованием преобразователя частоты.
Подход с использованием индуктивно-емкостного фильтра для решения проблемы шума двигателя имеет несколько недостатков:
• шум не убирается из системы, просто перемещается в индуктивно-емкостной фильтр;
• между преобразователем частоты и двигателем вводится падение напряжения;
• увеличиваются расходы на установку, потому что индуктивно-емкостной фильтр должен устанавливаться отдельно.
Автоматическая модуляция частоты переключения
Функция автоматической модуляции частоты переключения ASFM (Automatic Switching Frequency Modulation) является передовой электронной особенностью преобразователя частоты VLT HVAC Drive. Благодаря функции ASFM несущая частота автоматически настраивается на запрограммированную максимальную частоту переключения, когда двигатель нагружен легко. Когда нагрузка на двигатель высока, частота переключения уменьшается для экономии энергии.
Низкая несущая частота (низкая частота импульсов) вызывает шум в двигателе, что делает высокую несущую частоту более предпочтительной. Однако, высокая несущая частота генерирует тепло в преобразователе, ограничивая тем самым доступный для двигателя ток. Функция ASFM автоматически регулирует эти условия, чтобы обеспечить самую высокую несущую частоту без перегрева преобразователя. Обеспечивая регулируемую высокую несущую частоту функция ASFM уменьшает рабочий шум двигателя на малых оборотах, когда контроль за акустическим шумом является критичным, и обеспечивает полную выходную мощность на двигатель, когда это требуется. Системы без функцииASFM могут делать либо то, либо другое, но не оба действия одновременно. Важным преимуществом является отсутствие потребности в снижении выходной мощности при высокой нагрузке. Система ASFM настраивает частоту на основании требуемого двигателем тока, а не на основании оборотов двигателя, чтобы обеспечить наилучшую из возможных несущую частоту, удовлетворяющую требованиям как характеристик, так и контроля шума.
Установки с насосами и вентиляторами имеют характеристику переменного крутящего момента. Полный выходной ток преобразователя частоты и полная несущая частота доступны только до тех пор, пока нагрузка не достигнет 60 %. (На Рисунке 3 представлены преобразователь 15-60 л.с. при 460 В переменного тока и преобразователь 5-30 л.с. при 208 В переменного тока.) При характеристиках с переменным крутящим моментом это означает, что обороты вентилятора или двигателя составляют грубо от 75 % до 80 % от полных оборотов до того, как нагрузка достигает значения 60 %. Поэтому, более высокая частота переключения доступна почти все время без необходимости переразмеривать преобразователь, особенно в важных условиях низкой нагрузки, когда шум становится проблемой. Кроме того, двигатели установок HAVC переразмерены с коэффициентами гарантированного обеспечения характеристик и коэффициентом безопасности системы. Это связано с тем, что переразмеренная система всегда может работать при пониженной нагрузке, в то время как недоразмеренная система не сможет удовлетворить проектные требования. Таким образом, преобразователь частоты редко работает возле полной выходной мощности, существенно увеличивая диапазон оборотов, в котором можно использовать высокую несущую частоту.
Рисунок 3. Характеристики при переменном крутящем моменте.
Тот факт, что частота переключения наиболее высока при низкой нагрузке, означает, что электрические искажения в системе очень ограничены по сравнению с фиксированной высокой частотой переключения. Электромагнитные помехи также ниже, чем при фиксированной высокой частоте переключения, что приводит к меньшему току утечек и более длительному сроку службы двигателя. Кроме того, уменьшаются полные электрические потери, поскольку потери мощности из-за низкочастотных искажений в кабеле двигателя минимальны. Это имеет дополнительное преимущество снижения расходов на энергию.
При использовании функции ASFM акустический шум все еще генерируется, когда частотный преобразователь работает под высокой нагрузкой. Однако в большинстве установок с насосами и вентиляторами обычный окружающий генерируемый акустический шум увеличивается при увеличении оборотов и нагрузки. Поэтому шум, генерируемый частотой переключения, обычно маскируется акустическим шумом системы.
Влияние конструкции двигателя
Генерируемый в двигателе из-за резонанса частот шум зависит в основном от конструктивных деталей двигателя, конструкции двигателя и применяемых материалов. Конструктивные детали двигателя по разному реагируют на токи гармоник. При сравнении двух двигателей в одном двигателе акустический шум был ниже на частоте переключения, чем на двойной частоте переключения. Для другого двигателя все было с точностью до наоборот. Разница между этими двумя двигателями заключалась в разном количестве и размерах охлаждающих ребер.
Сравнение затрат и выгод от уменьшения шума
Минимальный воздушный зазор между статором и ротором, характеристика двигателей более высокого качества, также помогает уменьшить уровень шума двигателя.
Испытания двигателей различных марок и размеров привели к заключению о том, что ни один из изготовителей двигателей не имеет оптимальной конструкции в части уменьшения шума. Даже самые лучшие двигатели различаются в зависимости от размера двигателя. Поэтому невозможно сделать обобщающий вывод о шуме двигателя.
Рисунок 4. На приведенном графике сравниваются разные рассмотренные методы.
Сравнение методов уменьшения шума
Индуктивно-емкостной фильтр и высокая частота переключения приводят к большему снижению шума. Однако высокая частота переключения приводит не только к увеличению цены частотного преобразователя при ухудшении характеристик преобразователя, но также увеличивает электрические потери в системе и приводит к увеличенным электромагнитным помехам. Основным недостатком использования индуктивно-емкостного фильтра является увеличенная цена.
Белый шум существенно снижает шум двигателя, вызываемый преобразователем, но индуцирует другой свой собственный шум, создающий такие же проблемы.
ASFM, уникальная функция преобразователя частоты VLT HVAC Drive, обычно является наиболее эффективным с точки зрения затрат решением.
Допустимые нормы шума, или сколько децибел в …?
Шум является акустическим загрязнителем воздуха, поэтому чтобы иметь представление об опасности, которую представляет для слуха шум, мы предлагаем ознакомиться с допустимыми нормами шума для разного времени суток, а также узнать, какой уровень шума в децибелах производят те или иные звуки. Таким образом можно начать понимать, что является безопасным для слуха, а что представляет опасность. А с пониманием придет и умение избегать вредного воздействия звука на слух.
Допустимые нормы шума
По санитарным нормам, допустимым уровнем шума, который не наносит вреда слуху даже при длительном воздействии на слуховой аппарат, принято считать: 55 децибел (дБ) в дневное время и 40 децибел (дБ) ночью. Такие величины нормальны для нашего уха, но, к сожалению, они очень часто нарушаются, особенно в пределах больших городов.
Уровень шума в децибелах (дБ)
Действительно, часто нормальный уровень шума бывает существенно превышен. Вот примеры лишь некоторых звуков, с которыми мы сталкиваемся в нашей жизни и то, сколько децибел (дБ) в действительности эти звуки содержат:
Как можно видеть, большинство из шумов, с которыми мы сталкиваемся буквально каждый день, существенно превышают допустимый порог нормы. И это лишь естественные шумы, с которыми мы не можем ничего поделать. А ведь есть еще шум от телевизора, громкой музыки, которым мы сами подвергаем свой слуховой аппарат. И собственноручно наносим нашему слуху огромный вред.
Какой уровень шума наносит вред?
Если уровень шума достигает 70-90 децибел (дБ) и продолжается довольно длительное время, то такой шум при длительном воздействии может привести к заболеваниям центральной нервной системы. А длительное воздействие шума уровнем более 100 децибел (дБ) может приводить к существенному снижению слуха вплоть до полной глухоты. Поэтому вреда от громкой музыки мы получаем гораздо больше, чем удовольствия и пользы.
Что происходит со слухом при воздействии шума?
Агрессивное и длительное шумовое воздействие на слуховой аппарат может приводить к перфорации (разрыву) барабанной перепонки. Следствием этого является понижение слуха и, как крайний случай, полная глухота. И хотя перфорация (разрыв) барабанной перепонки является обратимым заболеванием (т.е. барабанная перепонка может восстановиться), однако процесс восстановления долгий и зависит от тяжести перфорации. В любом случае, лечение перфорации барабанной перепонки проходит под наблюдением врача, который выбирает схему лечения после осмотра.
Как не допустить ухудшения слуха?
Теперь, когда мы знаем причины ухудшения слуха, можно с легкостью сказать, что если избегать длительного агрессивного воздействия шума на слуховой аппарат, то этого одного уже будет достаточно для того, чтобы не происходило ухудшения со слухом. Тем не менее, необходимо давать нашим ушам отдых: бывать в тишине, выезжать в места, где уровень шума пониженный, не слушать громко музыку, телевизор и т.п. Однако, Вы наверняка согласитесь, что городскому жителю избежать днем и ночью атакующего шумового воздействия мегаполиса практически невозможно. Чтобы избежать влияния шума на свой организм приходится прятаться от внешнего мира за плотно закрытыми окнами. Но в закрытом помещении быстро становиться душно, приходится открывать окна для проветривания. Вместе с воздухом с улицы в квартиру снова поступает шум. Выходом из этого замкнутого круга может стать установка компактной приточной вентиляции, которая позволит дышать свежим очищенным воздухом с улицы при закрытых окнах.