0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частота работы двигателя автомобиля

CARInfo

Материалы
  • Авторам!
  • Новости сайта
  • Форум
  • Автомобили
    • VIN
    • Справочник кодов WMI
    • Модельный год в VIN
    • Мифы
    • Свет
    • Стандарты
    • Топливо
    • Защита
    • Дорожный опыт
    • Ящик мыслей
  • Мотоциклы
    • VIN
  • Аналитика
  • Материалы
  • Неразобранное
  • Онлайн проверки VIN
  • Последние проверенные VIN
  • EPC versions
Друзья
  • Сайт Резников
Вход на сайт

Cкорость автомобиля и частота вращения вала двигателя

При движении автомобиля всегда существует определенная зависимость между частотой вращения вала двигателя и колес (скоростью движения автомобиля). При увеличении частоты вращения вала двигателя происходит и соответствующее увеличение скорости движения автомобиля. С какой скоростью двигается автомобиль при 2000 об/мин и при 4500 об/мин? До какой максимальной скорости можно разогнаться на второй передаче? На какой скорости оптимально переключать передачи на автомобиле без тахометра? На эти и многие другие вопросы можно получить ответы с помощью данного расчета.

Для этого необходимо поделить частоту вращения вала двигателя на передаточное число текущей передачи. Полученный результат разделить на передаточное число главной передачи — в результате получится частота вращения ведущих колес автомобиля. Через динамический радиус колеса (он учитывает и деформацию колеса под нагрузкой и пробуксовывание ведущего колеса, что бы возникло трение в месте контакта с дорогой) частота вращения колеса переводится в скорость движения автомобиля.

Важно!
Данный расчет не показывает реальную максимальную скорость автомобиля!
Данный расчет справедлив только для автомобилей с механической коробкой передач (как с ручным, так и с автоматизированным /роботизированным/ управлением)!

В гидромеханических трансмиссиях (классический «автомат») жесткая связь между двигателем и колесами обеспечивается только при блокировке гидротрансформатора. Для большинства «автоматов» такое возможно только на 1…2 самых последних передачах при определенных режимах движения. Во всех остальных случаях гидротрансформатор проскальзывает и фактическая скорость движения автомобиля будет меньше расчетной.
Для автомобилей с вариатором данный расчет может применяться только для режимов фиксированных «виртуальных» передач.
Для автомобилей с двойной главной передачей (в частности некоторые комплектации Ford Focus, «преселективные» коробки передач DSG на автомобилях Volkswagen и т.д.) расчет будет доработан позже. Пока что для таких автомобилей предлагаю сделать следующее: умножить передаточное число каждой передачи на передаточное число соответствующей ей главной передачи и внести в поле для коробки передач, а передаточное число главной передачи внести равным 1. В данном случае расчет будет произведен верно.

В приведенной ниже форме для ввода первичных данных для примера указаны данные конкретного автомобиля. Введите вместо них данные своего автомобиля и получите результат 🙂

Вы нашли ответ на свой вопрос? Поддержите проект.
Вы заметили неточность? Вы можете дополнить приведенную здесь информацию?
Оставьте свое сообщение в поле для комментариев внизу этой страницы.
Спасибо. 🙂

  • Автомобили

Re: Cкорость автомобиля и частота вращения вала двигателя

Вот они единомышленники. Все это у меня тоже есть, но тут выходит проблема в другом — я не знаю насколько это интересно посетителям. Ведь если имеющийся расчет ему (посетителю) заполнить более-менее легко имея руководство по эксплуатации или табличку с ТТХ из Интернета, то вот в поисках того же Cx уже надо попотеть.
Да и в каких дорожных условиях будем считать мощностной баланс? Предлагать ему на выбор?
Думаю интересен был бы график ускорений, но для этого нужна внешняя скоростная характеристика двигателя и «набор» агрегатов трансмиссии для расчета ее (трансмиссии) К.П.Д.

Я Ваш E-mail занесу в записнушку и как только доберусь до написания новых «калькуляторов», то обращусь к Вам за оценкой-консультацией. Ок?

Сделай расчет для асфальта. Делов-то.

  • Ответить

Re: Cкорость автомобиля и частота вращения вала двигателя

в обозначении шин кроме R (радиальная шина) может быть и буква D (диагональная шина), хотя такие сейчас практически не встречаются.

  • Ответить

Re: Cкорость автомобиля и частота вращения вала двигателя

забавная фенька
можно попробовать и максимальную скорость посчитать.

для расчета максимальной скорости надо будет учесть сопротивление качению и сопротивление воздуха, которое, кстати говоря, при скоростях более 50 км/ч оказывает более существенное сопротивление, чем дорога.

если автору интересно — пишите на мыло. поищу в своих институтских архивах файлы с расчетами динамических характеристик авто.
они точно где-то есть.

Вот они единомышленники. Все это у меня тоже есть, но тут выходит проблема в другом — я не знаю насколько это интересно посетителям. Ведь если имеющийся расчет ему (посетителю) заполнить более-менее легко имея руководство по эксплуатации или табличку с ТТХ из Интернета, то вот в поисках того же Cx уже надо попотеть.
Да и в каких дорожных условиях будем считать мощностной баланс? Предлагать ему на выбор?
Думаю интересен был бы график ускорений, но для этого нужна внешняя скоростная характеристика двигателя и «набор» агрегатов трансмиссии для расчета ее (трансмиссии) К.П.Д.

Я Ваш E-mail занесу в записнушку и как только доберусь до написания новых «калькуляторов», то обращусь к Вам за оценкой-консультацией. Ок?

  • Ответить

Re: Cкорость автомобиля и частота вращения вала двигателя

в обозначении шин кроме R (радиальная шина) может быть и буква D (диагональная шина), хотя такие сейчас практически не встречаются.

  • Ответить

Re: Cкорость автомобиля и частота вращения вала двигателя

забавная фенька
можно попробовать и максимальную скорость посчитать.

для расчета максимальной скорости надо будет учесть сопротивление качению и сопротивление воздуха, которое, кстати говоря, при скоростях более 50 км/ч оказывает более существенное сопротивление, чем дорога.

если автору интересно — пишите на мыло. поищу в своих институтских архивах файлы с расчетами динамических характеристик авто.
они точно где-то есть.

Что разгоняет авто: мощность или момент?

В Интернете популярен мем, что машину разгоняет не мощность, а момент. Едва заходит разговор о мощности, ее тут же унижают: мол, она ничего не решает. А на самом деле?

В Интернете популярен мем, что машину разгоняет не мощность, а момент. Едва заходит разговор о мощности, ее тут же унижают: мол, она ничего не решает. А на самом деле?

Недопонимание происходит из-за того, что в технических характеристиках к автомобилю указывается максимальная мощность. По науке такая мощность называется номинальной и достигается при высоких оборотах и полном дросселе. А поскольку такой режим в жизни почти не используется, эта самая мощность определяет в основном максимальную скорость автомобиля, которая волнует только пубертатных гонщиков.

Читать еще:  1kz двигатель плохо заводится на холодную

Вот пиковый момент – другое дело. Он достигается при средних, а иногда и низких оборотах и косвенно определяет реальный темп разгона, потому что большую часть времени мы и елозим в середине шкалы тахометра. Однако не все так однозначно.

Сразу внесем ясность – мощность и момент связаны жесткой зависимостью:

(Момент, Н*м)=9550*(Мощность, кВт)/(частота вращения, об/мин).

Например, если двигатель Renault Logan развивает 82 л.с. (60,5 кВт) при 5000 об/мин, несложно посчитать, что при этой частоте он выдает 115 Н*м. При этом пиковый момент составляет 134 Н*м при 2800 об/мин. Кстати, соотношение этих двух моментов во многом определяет удобство управления автомобилем в тяжелых условиях. Если пиковый момент существенно превосходит таковой при максимальных оборотах, у двигателя появляется тракторная тяговитость: чем больше его грузишь, тем упорнее он сопротивляется.

Как бы то ни было, характеристики разгона во многом определяются кривой крутящего момента. Она называется внешней скоростной характеристикой, и ее форма может многое рассказать инженерам. Например, если момент растет от низких частот этак до 5000 об/мин, после чего резко скисает – скорее всего, речь о «крученом» моторе, форсированном по частоте: такие любят спортсмены и Honda. Если «горб» крутящего момент достигается, скажем, при 1250 об/мин, а к 2000 об/мин от него не остается и половины – речь о каком-то двигателе-тяжеловесе, призванном таскать прицепы и рыхлить землю. Чудеса современного турбонаддува позволяют создать двигатели с «полками» крутящего момента, когда он остается постоянным в довольно широком диапазоне оборотов. Ездить на таких моторах одно удовольствие: когда ни нажми педаль, следует резвый отклик.

Внешняя скоростная характеристика двигателя 1,4 TSI концерна VW. Мощность — красным, момент – синим

Отсюда складывается впечатление, что все-таки момент рулит, и темп разгона, равно как удобство управления, определяются им и только им. На самом деле не совсем.

Строго говоря, сравнивать двигатели по кривой крутящего момента уместно, если они имеют близкие характеристики и работают в одном диапазоне частот. Скажем, для легковых моторов этот диапазон составляет 800-6000 об/мин. Поэтому, имея два таких агрегата, можно предположить, что в дрег-рейсинге победит тот, у которого крутящий момент больше.

Но по моменту нельзя сравнивать моторы, работающие в разном диапазоне частот. Например, для новой Skoda Octavia предлагаются бензиновые моторы и дизели. Пиковый крутящий момент самого мощного бензинового мотора – 250 Н*м. У дизеля – целых 320 Н*м (+28%). Но при этом бензиновая «Шкода» на секунду быстрее дизельной в разгоне до 100 км/час, и дело даже не в том, что дизель на 10 кг тяжелее. Просто в данном случае крутящий момент уже не является исчерпывающим критерием, а вот тот факт, что бензиновая «Шкода» выдает 180 л.с. против 150 л.с., очень даже значим. Да, бензиновый мотор имеет меньший момент, но более «накручен», и в этом его преимущество.

Как же так? Да очень просто: нам ведь важен не момент на хвостовике двигателя, а момент на колесах – именно он преобразуется в полезное усилие, разгоняющее автомобиль. А между двигателем и колесами есть еще трансмиссия, и в ней крутящий момент увеличивается на порядок: скажем, на маховике мотора имеем 300 Н*м, на колесах – 3500 Н*м.

Так вот, если один мотор развивает гигантский момент, но его рабочая шкала смещена в область низких оборотов (то есть мощность невысока), для реализации преимуществ такого мотора потребуются более длинные передачи в трансмиссии, например, «длинная» главная пара. И момент на колесах, вполне возможно, будет отнюдь не так высок. Если установить на такой мотор «короткую» пару, он попросту не сможет разогнаться до максимальных скоростей – не хватит «кручености» мотора. Такой двигатель напоминает силача с короткими ногами, который может стронуть с места тепловоз, но стометровку бежит на уровне восьмиклассницы.

Скажем, у той же Skoda дизель не разгоняется выше 4000 об/мин, а бензиновый мотор выдает более 6000 об/мин, поэтому для дизеля требуется главная пара с меньшим передаточным числом. В результате итоговый момент на колесах может быть ниже, несмотря на преимущество в моменте двигателя.

Чтобы не углубляться в сложную арифметику, лучше оперировать именно мощностью. Ее прелесть в том, что в трансмиссии она не изменяется (если пренебречь потерями), и, грубо говоря, более мощный мотор при прочих равных всегда обеспечит больший крутящий момент на колесах. Другое дело, что разгон зависит не только от максимальной мощности, но и от ее распределения по шкале оборотов – есть и такая внешняя скоростная характеристика. И тут уже можно говорить веско: из двух моторов лучший разгон обеспечит тот, у которого во всем диапазоне большая мощность.

Уточню еще такой нюанс: чтобы выжать из мотора максимум, нужна правильная трансмиссия с оптимальным набором передаточных чисел. Если это условие выполняется, мощность более показательна, потому что нужный момент на колесах обеспечит трансмиссия.

А почему все-таки люди пользуются моментом? Потому что график мощности от оборотов ненагляден. Скажем, кривая крутящего момента всегда имеет характерную горбинку, и по ней можно многое сказать о характере мотора. Кривая мощности, как правило, напоминает устремленную вверх прямую (или пологую кривую) с крючком на пиковых оборотах и чисто визуально воспринимается плохо. Поэтому для сравнения близких по характеристикам моторов вполне можно мериться крутящими моментами и их характеристиками. Но лишь до тех пор, пока это действительно близкие моторы.

А вообще даже сама постановка вопроса не вполне верная. Что разгоняет, мощность или момент? Обе одновременно, потому что это две стороны одной медали. Иногда удобнее оперировать одной, иногда другой, но разгон обеспечивают обе.

Расчет мощности и частоты вращения коленчатого вала двигателя автомобиля

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно .

Читать еще:  Двигатель 2uz тех характеристики

Мощноть NE двигателя, необходимую для движения нагруженного автомобиля с установившейся максимальной скоростью VA.MAX в заданных дорожных условиях, определим по формуле:

,кВт

,кВт

где: VA.MAX – максимальная скорость движения автомобиля (по заданию), км/ч;

G – сила тяжести автомобиля с грузом, Н;

Ψ – приведенный коэффициент дорожного сопротивления;

к — коэффициент сопротивления воздуха, кг/м3;

F – площадь лобового сопротивления автомобиля, м2;

ηТР – механический КПД трансмиссии для режима максимальной скорости.

Площадь лобового сопротивления для автомобилей:

, м2 (2)

где: В – колея задних колес, м;

Н – габаритная высота автомобиля, м.

Рассчитаем площадь лобового сопротивления автомобиля:

Значения коэффициента сопротивления воздуха к эмпирические и принимаются из характеристики прототипа. В случае отсутствия этого коэффициента (устаревшая модель, некоторые грузовые автомобили) он принимается в следующих пределах:

к=0,20 .0,30 – легковые автомобили с закрытым кузовом;

к= 0,35 .0,60 – легковые автомобили с необтекаемой формой кузова;

к= 0,60 .0,70 – грузовые автомобили;

к= 0,30 .0,50 – автобусы.

Примем k=0,5 как для легковых автомобилей с необтекаемой формой кузова

Сила тяжести автомобиля определяется как:

,Н (4)

где: т0 – собственная (снаряженная) масса автомобиля (принимается по прототипу), кг;

тГ – масса перевозимого груза (по заданию), кг;

g – ускорение свободного падения, 9,8 м/с2.

Исходя из расчетных значений рассчитаем мощность прототипа УАЗ-452:

При проектировании для обеспечения необходимого динамического фактора в области средних эксплуатационных скоростей движения определяют максимальную мощность двигателя по формуле:

(5)

Частота вращения коленчатого вала двигателя, соответствующая максимальной мощности, определяется коэффициентом оборотности двигателя ηп , равным отношению частоты вращения коленчатого вала двигателя к соответствующей скорости движения автомобиля.

, отсюда (6)

Коэффициент оборотности принимают равным в пределах 35 .50 в соответствии с прототипом автомобиля и расчетной максимальной мощностью двигателя.

Популярное на сайте:

Организация процесса исследования и разработки
В этом разделе дается характеристика объекта и методов исследования, определяется состав этапов (работ), продолжительность исследования или разработки и численность исполнителей. Таблица 43 Структура трудоемкости этапов выполнения прикладных исследований Этапы Содержание этапов Доля этапа в общей т .

Организация материального снабжения пункта ТО-3
Определяю годовой расход смазочных материалов согласно [5] с.105 (2.7) где — программа ремонтов, (сек.); — расход смазки, (кг) (2.8) где КИ – индустриальное масло- 0,2 кг КО – осевое масло- 1 кг КК – компрессорное масло- 0,2 кг КЦИАТИМ-201 – пластическая масла- 0,01 кг КПр. – приборное МВП- 0,2 кг .

Выбор посадок расчётным методом
Расчёт и выбор посадок с натягам Вместо шпоночного соединения зубчатое колесо вал рассчитать и выбрать посадку с натягом. Построить схему расположения функциональных полей допусков деталей сопряжения. Вычислить эскизы размеров, назначить шероховатость сопрягаемых поверхностей. Определяем по формула .

Генератор поликлиновой: электрическое сердце автомобиля

На современных двигателях все более широкое применение находят электрические генераторы, имеющие привод поликлиновым (ручейковым) ремнем. О том, что такое поликлиновый генератор, какую конструкцию он имеет и как работает, а также о правильном подборе автомобильного генератора читайте в данной статье.

Что такое генератор поликлиновой?

Генератор поликлиновой — компонент электрической бортовой системы транспортного средства; генератор переменного тока с приводом от коленчатого вала двигателя, оснащенный шкивом под поликлиновый ремень. Генератор обеспечивает питание компонентов электрической системы автомобиля и зарядку аккумуляторной батареи.

Данные генераторы устанавливаются на бензиновые и дизельные силовые агрегаты с ременным приводом вспомогательных агрегатов, в котором передача крутящего момента от коленвала осуществляется посредством плоского поликлинового (ручейкового) ремня. Обычно это двигатели легковых и грузовых автомобилей стандарта «Евро-3» и выше (также возможно переоснащение и двигателей «Евро-2»).

Поликлиновая передача имеет ряд преимуществ перед обычной клиноременной. В передаче этого типа используется один плоский ремень, на рабочей поверхности которого выполнен несколько (от 4 до 8) продольных канавок (ручейков) треугольной (клиновой) формы. Такая форма в несколько раз увеличивает площадь контакта ремня со шкивами, чем обеспечивается надежное сцепление этих деталей и передачу крутящего момента без проскальзывания.

Но главное, что поликлиновые ремни за счет своей небольшой толщины могут нормально работать при значительных изгибах и допускают применение шкивов малого диаметра. Это имеет ряд положительных последствий:

  • Снижение массы и стоимости шкива;
  • Возможность получения большого передаточного числа без сокращения ресурса ремня (обычные клиновые ремни за счет большой толщины менее эластичны и не могут работать со шкивами меньше некоторого диметра — они проскальзывают, изнашиваются и изламываются);
  • Повышение надежности всего двигателя.

Конструктивно поликлиновые генераторы идентичны обычным, отличаясь лишь типом шкива и некоторыми характеристиками.

Типы и характеристики генераторов

На современных транспортных средствах используются генераторы только одного типа — синхронные трехфазные переменного тока, оборудованные трехфазными выпрямителями. Данные агрегаты компактны и эффективны, и давно вытеснили генераторы постоянного тока (хотя их еще можно встретить на старых отечественных автомобилях).

Существующие сегодня генераторы делятся на группы по применимости, основным характеристикам и способу установки.

По применимости генераторы бывают двух основных типов:

  • Для бензиновых силовых агрегатов;
  • Для дизельных силовых агрегатов.

Генераторы для бензиновых моторов предназначены для работы на более высоких оборотах, для дизелей — на пониженных оборотах. Генераторы для различных моторов имеют ряд конструктивных отличий, в том числе неодинаковое число витков в обмотках, различные диаметры приводных шкивов и другие.

Автомобильные генераторы имеют следующие основные характеристики:

  • Номинальное напряжение;
  • Номинальный ток;
  • Токоскоростные характеристики.

Номинальное напряжение может составлять 13,5 или 14 В для транспортных средств с напряжением бортовой сети 12 В, и 28 В для транспортных средств с напряжением бортовой сети 24 В. Повышенное напряжение генератора компенсирует падение напряжения на выпрямителе и регуляторе. Номинальный ток может лежать в пределах 60-120 А, чем более мощные потребители установлены на транспортном средстве, тем больший ток должен обеспечивать агрегат.

Токоскоростные характеристики — это зависимость силы вырабатываемого тока от угловой скорости вращения (частоты) ротора агрегата. Из них наиболее важны:

  • Номинальная рабочая частота — частота вращения ротора, при которой вырабатывается номинальный ток;
  • Минимальная рабочая частота — частота вращения ротора, при которой вырабатывается ток на 40-50% меньше номинального, обычно это соответствует холостым оборотам мотора;
  • Максимальная рабочая частота — частота вращения ротора, при которой вырабатывается ток, не более чем на 10% превышающий номинальное значение.
Читать еще:  Чем крутить шаговый двигатель

Как правило, номинальный ток указывается для частоты вращения его ротора 5000 или 6000 об/мин. Минимальная частота составляет 1500 об/мин для обычных и 1800 об/мин для высокоскоростных генераторов. Обратите внимание: здесь речь идет именно о частоте вращения ротора генераторной установки, этим значениям соответствует в 1,2-2 раза более низкая частота вращения коленвала мотора.

Наконец, по способу монтажа генераторы поликлиновые делятся на две группы:

  • С обычным монтажом;
  • С монтажом на монокронштейне.

В первом случае генератор крепится к двигателю с помощью двух-четырех болтов и кронштейнов, агрегат жестко зафиксирован на своем месте. Во втором случае генератор установлен в подвижный кронштейн, с помощью которого осуществляется регулировка степени натяжения приводного ремня.

Конструкция и принцип работы поликлинового генератора

Конструктивно автогенератор состоит из нескольких основных компонентов — корпуса, статора, ротора, выпрямительного блока, регулятора напряжения, щеточного узла и приводного шкива. В некоторых агрегатах также присутствует один или два вентилятора охлаждения.

Корпус. Может быть цельным или составным. В первом случае это одна деталь, внутри которой расположены все остальные компоненты генератора. Во втором случае корпус состоит из двух половин, между которыми с помощью нескольких болтов зажимается статор — сегодня эта конструкция получила наибольшее распространение.

Статор. Основной компонент генератора, в котором вырабатывается ток. Статор состоит из металлического сердечника, внутри которого располагаются витки обмоток. Всего в статоре три обмотки, они изготавливается из изолированного медного провода большого сечения. Витки уложены в определенном порядке для обеспечения постоянных значений тока независимо от положения статора относительно ротора.

Ротор. Один из основных компонентов генератора, в нем формируется магнитное поле, обеспечивающее генерацию тока в статоре. Ротор состоит из вала, на котором располагаются полюса (металлические сердечники), обмотка возбуждения и контактные кольца для подачи тока на обмотку. Ротор размещается внутри статора, вал ротора располагается в подшипниках в торцах корпуса (или в крышках корпуса). Также на валу ротора, снаружи или внутри корпуса, могут располагаться один или два вентилятора охлаждения.

Щеточный узел. Узел с двумя подпружиненными графитовыми щетками, которые упираются в контактные кольца на валу ротора, обеспечивая подачу тока на вращающуюся обмотку возбуждения. Обычно щеточный узел объединяется с регулятором напряжения.

Выпрямительный блок. Узел, на котором устанавливается трехфазный выпрямитель тока на шести полупроводниковых диодах (по два на каждую фазу). Данный блок осуществляет выпрямление тока — преобразование переменного тока в постоянный, который далее используется для питания потребителей бортовой электросети. Выпрямительный блок обычно собирается на массивной подковообразной пластине (она служит в качестве теплоотвода для охлаждения диодов), которая устанавливается на задней стенке генератора и закрыта защитной крышкой.

Регулятор напряжения. Узел, выполняющий стабилизацию поступающего в бортовую сеть напряжения независимо от частоты вращения двигателя и других условий. В настоящее время используются только электронные регуляторы, объединенные с щеточным узлом.

Приводной шкив. Поликлиновый пластиковый или металлический шкив, жестко установленный на выступающей за пределы корпуса части вала ротора. С его помощью осуществляется передача крутящего момента от коленчатого вала двигателя на ротор генератора. От размера шкива зависит передаточное число ременного привода.

Работает генератор следующим образом. При переводе замка зажигания в положение пуска двигателя на обмотку возбуждения генератора подается ток от аккумулятора, поэтому вокруг ротора образуется магнитное поле. При запуске двигателя ротор и вместе с ним силовые линии магнитного поля приходят во вращение, в обмотке статора за счет явления электромагнитной индукции образуется переменный ток — он снимается с выводов обмоток, поступает на выпрямитель и к потребителям. При успешном запуске двигателя обмотка возбуждения отключается от аккумулятора, необходимый для работы ток теперь поступает от статора — генератор переходит в режим самовозбуждения. При изменении режима работы двигателя изменяется и выходное напряжение генератора, однако в работу вступает стабилизатор напряжения, он в зависимости от изменения частоты вращения ротора генератора изменяет поступающий в обмотку возбуждения ток, чем достигается стабильность выходного напряжения.

Генератор в сборе монтируется на двигатель с помощью подвижного или неподвижного кронштейна. Привод этого агрегата может быть двух типов:

  • Отдельный привод генератора;
  • Совмещенный привод генератора, водяного насоса и/или других навесных агрегатов.

В первом случае крутящий момент от шкива коленвала с помощью ремня подается на шкив генератора, в приводе нет дополнительных деталей. Во втором случае ремень охватывает три шкива, также в этом приводе может присутствовать натяжитель ремня.

Вопросы правильного выбора, ремонта и замены генератора

Генератор с течением времени может терять свои характеристики или полностью выходить из строя. При подозрениях на поломку следует проверить работоспособность агрегата — это необходимо выполнять в соответствии с инструкцией по ТО и ремонту транспортного средства. Многие неисправности агрегата можно устранить — поменять выпрямитель, регулятор и другие детали. Но если генератор не подлежит ремонту, то его необходимо заменить в сборе.

Выбирать генератор необходимо того же типа и каталожного номера, что был установлен на авто ранее. В крайнем случае следует подбирать генератор по его основным характеристикам и по диаметру приводного шкива. В первую очередь, нужно обращать внимание на номинальное напряжение и ток, а также на назначение генератора — нельзя использовать агрегат для дизелей на бензиновых моторах, и наоборот. А изменение диаметра шкива изменяет передаточное число привода и, соответственно, режимы работы генератора.

Устанавливать и регулировать новый генератор также необходимо в полном соответствии с указаниями инструкции. У многих автомобилей замена этого агрегата имеет свои особенности, которые обязательно нужно учитывать. Особое внимание нужно уделять регулировке силы натяжения ремня, ее нельзя увеличивать и уменьшать. При правильной замене генератора и регулировке его привода электросистема автомобиля вновь будет работать нормально на всех режимах.

Ссылка на основную публикацию
Adblock
detector