0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Биполярный шаговый двигатель схема запуска

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Простой драйвер шагового двигателя

Предлагается 2 варианта схем простейших драйверов шаговых моторов, реально рабочих, так как информация взята из зарубежных радиоконструкторов (ссылка на оригиналы в конце статьи).

Схема драйвера шагового двигателя

Схема драйвера шагового двигателя не содержит дорогих деталей и программируемых контроллеров. Работа может регулироваться в широком диапазоне с помощью потенциометра PR1. Есть изменение направления вращения двигателя. Катушки шагового двигателя переключаются с помощью четырех МОП-транзисторов T1-T4. Применение в блоке транзисторов большой мощности типа BUZ10 позволит подключить двигатели даже с очень большим током.

Особенности схемы и детали

  • управление четырехфазным шаговым двигателем
  • плавная регулировка скорости вращения в пределах всего диапазона
  • изменение направления вращения мотора
  • возможная остановка двигателя
  • блок питания 12 В постоянного тока

Детали — IC1: 4070, IC2: 4093, IC3: 4027, T1-T4: BUZ10, BUZ11

Блок драйвер шагового двигателя собран на печатной плате, показанной на рисунке. Монтируем, как правило, начиная с припайки резисторов и панелек для интегральных микросхем, а под конец электролитические конденсаторы и транзисторы большой мощности.

Блок, собранный из проверенных компонентов, не требует настройки и запускается сразу после подачи питания. Со значениями элементов, указанными на схеме, позволяет работать двигателю 5,25” и выполняет изменение скорости вращения в интервале от 40 об./мин. до 5 об./мин.

Биполярный контроллер шаговых двигателей

Схема представляет собой дешевую, и прежде всего легко собираемую альтернативу доступным микропроцессорным биполярным контроллерам шаговых двигателей. Рекомендуется там, где точность управления играет меньшую роль, чем цена и надежность.

Принципиальную схему можно разделить на следующие блоки:

  1. последовательный чип, генерирующий битовые строки,
  2. локальный генератор тактового сигнала,
  3. схема управления питанием катушек,
  4. выходные буферы Н-моста,
  5. схемы защиты входных сигналов управления.

Контроллер должен питаться постоянным напряжением, хорошо отфильтрованным, желательно стабилизированным.

Теперь пару слов про H-мосты, которые будут работать с этим драйвером. Они должны принимать на своих входах все возможные логические состояния (00, 01, 10, 11), без риска какого-либо повреждения. Просто в некоторых конфигурациях мостов построенных из дискретных элементов, запрещается одновременное включение двух входов — их естественно нельзя использовать с этим контроллером. Мосты выполненные в виде интегральных микросхем (например L293, L298), устойчивы к этому.

И в завершение третий вариант контроллера, на микросхемах STK672-440, имеющий все необходимые защиты и функции смотрите по ссылке.

Шаговый двигатель и драйвер для него

Шаговые двигатели широко используются в приложениях, требующих огромную точность. В отличие от электродвигателя постоянного тока у него отсутствуют щетки и коммутатор — для этого у него имеется несколько отдельных обмоток, которые коммутируются внешней электронной управляющей схемой или как ее принято называть одним словом — драйвером. Вращение ротора в них осуществляется с помощью коммутации обмоток последовательно — шаг за шагом, без обратной связи. Здесь можно увидеть огромный минус всех шаговых двигателей — в случае механической перегрузки, когда ротор не двигается, шаги будут путаться и движение становится непредсказуемым.

По виду обмоток, шаговые двигатели бывают: униполярными и биполярными. По строению их можно классифицировать еще на как минимум три вида:

  1. С переменным магнитным сопротивлением: эти электродвигатели обеспечивают высоченную точность перемещения и очень низкий крутящий момент

С постоянным магнитом — низкий уровень точности, большой крутящий момент, но самая низкая стоимость изготовления

  • Гибридный шаговый двигатель — обеспечивает высокую точность, отличный крутящий момент, но и цена его бывает кусачей
  • У шаговых двигателей первого типа зубчатые обмотки и ротор сделаны из стали. Максимальная сила тяги появляется в момент перекрытия зубьев обоих сторон. В электродвигателях с постоянным магнитом, имеется постоянный магнит, который ориентируется в зависимости от полярности обмотки. В гибридных сочетают две технологии одномоментно.

    Независимо от вида устройства для создания одного полного оборота вала равному 360 градусов необходима целая сотня шагов коммутаций. Для обеспечения плавного и стабильного движения используют подходящую схему управления (драйвер), в соответствии с параметрами шагового двигателя (крутящий момент, инертность ротора, резонанс и т.п.). Кроме того схема драйвера может использовать различные способы коммутации.

    Последовательный метод коммутации по одной обмотке называют полным шагом, но если коммутация происходит поочередно одна и две обмотки, то это принято называть полушагом. Бывают так же синусоидальные микрошаги, что дает им высокую точность и плавность хода.

    Шаговый двигатель используется для изготовлении печатных плат, микродрели, автоматической кормушки и в конструкциях роботомеханизированных аппаратов. Если вы еще не сталкивались с шаговыми двигателями, то прочитайте внимательно эту статью.

    Он имеет пять или шесть проводов. В соответствии со схемой запускается разом только одна четвертая обмоток. Линии Vcc обычно соединяются с плюсом источника питания. Концы обмоток 1a, 1b, 2a, и 2b соединяются при коммутации через управляющие транзисторы только с землей, в связи, с чем их схема драйвера достаточно проста.

    Полярность его обмоток изменяется во время процесса коммутации. За один раз активируется 50% обмоток, что обеспечивает в сравнении с выше рассмотренным гораздо большую эффективность. У биполярных шаговых двигателей имеется только четыре провода, которые соединяютсяполумостом. При коммутации полумосты прикладывают к концам обмоток с отрицательным или положительным напряжением. Их запускают и с помощью биполярного драйвера: для этого необходимо соединить только линии обмоток 1a, 1b, 2a и 2b.

    Необходимые коммутации полу и полного шага и с обоими видами обмоток отображает таблица на рисунке ниже. Т.к в случае драйвера униполярного шагового двигателя происходит только отпирание управляющих транзисторов, то эти шаги в ней представлены логическими числами 1 и 0. Управление биполярным ШД может потребовать гораздо больше сигналов, и его шаги представлены выходной полярностью схемы управления.

    Шаговые двигатели отличаются от обычных управляемых двигателей постоянного тока тем что, совершают дискретное вращение под воздействием импульсных управляющих сигналов. В конкретном шаговом двигателе, который мы будем рассматривать, требуется 48 управляющих импульсов чтобы сделать полный оборот на 360 градусов.

    Еще одним важным преимущество шаговых двигателей можно считать то, что их скорость вращения может быть достигнута почти мгновенно при реверсировании направления вращения.

    В состав шагового двигателя входит ротор, представляющий обычный постоянный магнит, вращающийся внутри, и статор на четыре катушки, являющиеся частью корпуса и неподвижные. Ротор вращается от поступающих импульсных последовательностей подаваемых к одной или двум катушкам одномоментно.

    Для схемы драйвера шаговым двигателем потребуется контроллер. Контроллер это такая большая специализированная микросхема, которая подает постоянное напряжение к любой из четырех катушек статора в зависимости от заложенной программы. В нашей схеме такой микросхемой является ULN2003 или ее российский аналог К1109КТ22, состоящий из множества мощных ключей с защитными диодами. Последнии дают возможность подключать различные индуктивные нагрузки без дополнительной защиты от всплесков обратного напряжения.

    Однополярный двигатель обладает пятью или шестью контактов в зависимости от типа. Если он имеет шесть контактов, то потребуется соединить выводы 1 и 2 красного цвета вместе и подключить их к плюсу напряжения питание. Оставшиеся выводы a1 желтого, b1 черного, a2 оранжевого и b2 коричневого цвета и подключить к контроллеру в соответствии со схемой.

    Существует несколько способов, которые можно использовать, для управления шаговым двигателем.

    Для управления шаговым двигателем с компьютером нам потребуется только компьютер с LPT разъемом или специализированном контроллере, который можно недорого приобрести и вставить в PCI слот материнской платы и программа. Программу вы можете скачать по зеленой ссылке чуть выше. При управление шаговым двигателем с компьютера вы будете иметь намного больше возможностей при конструировании различных радиолюбительских самоделок или приспособлений.

    В программе управления драйвером очень понятный и дружественный интерфейс для работы с шаговым двигателем, который дает возможность точно управлять скоростью шагового двигателя и направлением его вращения в режиме реального времени, а также вы сможете выбрать различные способы управления.

    Схема драйвера дает возможность изменять скорость вращения вала и направление его вращения. Частота микроконтроллера формируется внешним генератором на 4 МГц. На радиокомпонентах R1 – R3, С1 и транзисторе VT1 собран генератор прямоугольных импульсов, частоту которого можно регулировать сопротивлением R2. Напряжение с емкости конденсатора С1 поступает на вывод RB5 микроконтроллера. После того как потенциал превысит пороговый уровень, на выводе RB7 образуется высокий потенциал. Поэтому, первый транзистор открывается и разряжает емкость, а затем алгоритм повторяется.

    Читать еще:  Что такое двигатель миллера

    При регулирование сопротивления R2 изменяется скорость вращения шагового двигателя от 27 до 128 оборотов в минуту. Учтите, что при повышении скорости вращения, снижается крутящий момент на валу шагового двигателя. Данная схема не имеет ОС, поэтому скорость вращения зависит только от переменного резистора R2 и от нагрузки на вал. Реверс обмоток двигателя осуществляется через транзисторные ключи VT2-VT5. Для защиты транзисторов от возможных всплесков, в схему введены диоды VD1 — VD4. Изменение направления вращения и остановка задается с помощью тумблеров SA1 — SA3. Прошивку к МК смотри в архиве выше, в папке 029-el

    Рассмотрена схема управления шаговым двигателем униполярного типа в режиме полного шага через последовательный интерфейс RS232 компьютера. Драйвер способен управлять двумя шаговыми двигателями через программу специальную терминал

    При замыкании кнопок управления SB-1 или SB-2 высокий логический уровень через элемент ИЛИ реализованный на диодах VD-6 и VD-7 следует на затвор полевого транзистора VT-5, отпирая его, и тем самым включая питание двигателя. Диоды можно можно взять почти любые, кремниевые, какие влезут. Полевой транзистор выбираем исходя из напряжения питания и потребляемого тока ШД. Если используется низковольтный ЩД, то и транзистор в схеме берем низковольтный, так как у него ниже сопротивление сток-исток.

    Желательно и в роли VT1-VT5, так же применить полевые транзисторы с N-каналом. Тогда сопротивление резисторов в цепи базы (по схеме) можно существенно снизить.

    Таймер NE555 предназначен для генерации потока тактовых импульсов управляющими скоростью вращения шагового двигателя. Тогда как логические микросхемы CD4070 аналог К1561ЛП14 и CD4027 аналог K561ТВ формируют последовательность сигналов в нужном порядке, для запуска электродвигателя.

    Схема подходит для однополярного шагового двигателя, имеющего шесть управляющих выводов. Изменяя сопротивление переменного резистора можно изменять частоту сигнала, а следовательно и скоростью вращения электродвигателя. Затем импульсы поступают на входы JK-тригеров на микросхеме CD4027, которые формируют управляющие импульсы в нужной последовательности. При помощи переключателя SA1 можно осуществлять реверсирование шагового двигателя.

    Управление униполярными двигателями в практических решениях

    В статье, опубликованной в [1], автором не были в полном объеме раскрыты вопросы, касающиеся схем управления униполярными шаговыми двигателями, и примененные им на практике варианты решений для приводов на основе шаговых двигателей этого типа. Поскольку тема шаговых двигателей вызвала повышенный интерес, а упомянутый вопрос не был освещен достаточно полно, то предлагается его более подробное рассмотрение. Тем более что по опыту автора статьи, освоение шаговых двигателей легче, проще и значительно дешевле начинать именно с униполярных.

    Основное преимущество униполярных шаговых двигателей заключается в простоте систем управления. Они не требуют сложных драйверов и дорогостоящих ИМС. Кроме того, и сами двигатели менее дороги, так как в основном данный тип включения обмоток характерен для двигателей на постоянных магнитах. Все это можно найти в статье автора, опубликованной ранее в [1]. Практическое решение для управления униполярным шаговым двигателем понадобилось при использовании двигателя серии P542-M48 [2], а именно униполярного шагового двигателя P542-M482U с встроенным редуктором G23 (125:1). Поскольку двигатель униполярный, схема его управления, как было указано выше, не содержит ни дорогих ИМС, ни специальных сложных драйверов. Здесь достаточно обычных ключей. Коммутатор включения обмоток выполнен на базе технического решения, опубликованного в [3]. Пример практической схемы управления, разработанной автором статьи, которая пригодна для самых различных применений, приведен на рис. 1.

    Рис. 1. Схема управления униполярного шагового двигателя с универсальным коммутатором

    Частота вращения двигателя задается внешним тактовым генератором (скважность любая), сигнал с которого подается на вход «Шаг», необходимое направление вращения устанавливается через вход «Направление вращения». Оба сигнала имеют логические уровни, и если для их формирования используются выходы с открытым коллектором, то требуются соответствующие резисторы подтяжки (на схеме рис. 1 они не показаны). Временная диаграмма работы коммутатора схемы (рис. 1) приведена на рис. 2.

    Рис. 2. Временная диаграмма универсального коммутатора с реверсом (маркеры показывают изменение очередности включения фаз): Q1 D2-2, Q2 D2-2 — верхние две трассы; Q1 D2-1, Q2 D2-1 — нижние две трассы

    Как можно видеть, здесь реализован полношаговый режим управления (подробно см. [1]) с перекрытием фаз, то есть один импульс сдвигает ротор двигателя на один шаг, но в некоторый момент (половина длительности импульса) фазы накладываются друг на друга (рис. 2). Если нет необходимости в реверсе, схема коммутатора может быть значительно упрощена (рис. 3), при этом частота вращения остается неизменной, а диаграмма управления остается аналогичной той, которая приведена на рис. 2 (трассы до переключения очередности фаз), но уже без возможности изменения направления вращения двигателя.

    Рис. 3. Упрощенная схема коммутатора шагового двигателя (без реверса)

    Момент вращения устанавливается изменением тока в обмотках двигателя от регулируемого источника напряжения положительной полярности (автором использован импульсный понижающий стабилизатор, выполненный по типовой схеме на стандартной ИМС с опцией внешнего включения). Расчет такого DC/DC-преобразователя можно легко выполнить в интерактивном режиме [4]. Полное отключение двигателя без удержания ротора осуществляется снятием питающего напряжения с обмоток, это легко выполнить через вход выключения преобразователя, задав в [4] при выборе ИМС соответствующую опцию. В авторском варианте применена ИМС LM2675M-ADJ [5]. Остановка с фиксацией ротора, то есть режим удержания, осуществляется подачи напряжения с частотой коммутации (вход «Шаг»), одновременно желательно уменьшить величину питающего обмотки напряжения Vdc по крайней мере вдвое. С этой точки зрения выбор преобразователя с возможностью регулировки выходного напряжения на ИМС, подобной LM2675M-ADJ, является оптимальным. Пример авторского варианта схемы для формирования напряжения питания обмоток шагового двигателя приведен на рис. 4. Такая схема пригодна для запитки шаговых двигателей любого типа.

    Рис. 4. Схема запитки шагового двигателя с удержанием и выключением

    Схема (рис. 4) обеспечивает подачу двух напряжений для питания обмоток двигателя: 12 В в рабочем режиме и 6 В в режиме удержания (формулы, необходимые для расчета выходного напряжения, приведены в [5]). Рабочий режим включается подачей высокого логического уровня на контакт BRAKE (торможение) разъема Х1. Допустимость снижения напряжения питания определяется тем, что момент удержания шаговых двигателей превышает момент вращения. Так, для рассматриваемого двигателя момент удержания с редуктором 25:6 равен 19,8 Н·см, а момент вращения всего 6 Н·см. Но при увеличении отношения эта зависимость нивелируется и для двигателей с редукторами с отношением 80 и выше — практически не отличается. Основная выгода этого метода в том, что он позволяет уменьшить общее потребление тока. В нашем случае с 460 до 230 мА, то есть в два раза, а мощность — в четыре, с 5,52 до 1,38 Вт! Как говорится, почувствуйте разницу. Полное отключение двигателя осуществляется подачей высокого логического уровня на контакт ON/OFF разъема Х1. Если схема управления имеет выход на транзисторах с открытым коллектором, то в ключах на транзисторах VT1, VT2 нет необходимости.

    Примечание. В этом варианте применение резисторов подтяжки недопустимо! В качестве дросселя автором использовалась катушка SDR1006-331K (Bourns). Общее питание формирователя напряжения для обмоток двигателя в рассмотренных режимах может быть уменьшено до 16-18 В. Еще раз обращаю внимание: при самостоятельном расчете не забудьте учитывать, что формирователь обеспечивает режим с перекрытием фаз, то есть лучше закладывать номинальный ток схемы питания, равный удвоенному номинальному току обмоток.

    Согласно спецификации [2] оптимальным для двигателей серии P542-M48 является шаг с частотой f = (300-500) Гц. Это и будет определять частоту вращения вала, но частота вращения зависит и от конструкции самого двигателя. В нашем случае, без учета редуктора, частота вращения составит:

    Читать еще:  Что такое график всх двигателя

    где 7,5 — это угол поворота ротора двигателя на один шаг управления, он-то и задан конструктивно. Дальнейшее понижение частоты вращения определяется редуктором.

    Частота коммутации обмоток вполне может быть увеличена до 1,5 кГц. Для этого, чтобы компенсировать уменьшение момента вращения, неизбежного с ростом частоты, применяются специальные методы запитки обмоток двигателя. Если внимательно читать спецификацию [2], то можно заметить, что момент вращения двигателя (сноска «Standard Versions:») задан для двух условий, а именно: для условия, обозначенного как L/R, и условия, которое обозначено как L/4R. Можно заметить, что во втором случае частота вращения ротора шагового двигателя, при котором обеспечивается указанный в спецификации момент, заметно выше, а именно 550 вместо 300 Гц. Что это за условия? Проблема обеспечения момента вращения для шагового двигателя заключается в том, что для него не требуется подача напряжения как такового, а необходимо обеспечение тока в обмотках. Именно этот ток создает магнитное поле статора, взаимодействующее с постоянным магнитным полем ротора. Момент на роторе двигателя как раз и определяется взаимодействием этих магнитных полей.

    Как известно, ток в индуктивности не может изменяться скачком, а растет по экспоненте до значения Imax = Vdc/R:

    Требуемое для этого время определяется постоянной времени цепи:

    где L — это индуктивность обмотки двигателя; R — общее сопротивление в цепи обмотки. Это сопротивление может быть как собственно активным сопротивлением обмотки двигателя RL, так и его суммой с некоторым добавочным резистором. Как видно из приведенной формулы, скорость изменения тока в обмотке обратно пропорциональна ее индуктивности и прямо пропорциональна сопротивлению. Чем быстрее ток достигнет своего максимального уровня:

    где Vdc — это номинальное напряжение запитки обмотки; RL — активное сопротивление в цепи обмотки, — тем скорее установится заданный момент на роторе. Это и определяет скорость вращения вала шагового двигателя в зависимости от частоты коммутации. Таким образом, наша цель — установить (быстро, насколько возможно) ток в обмотке на уровне Vdc/RL.

    Просто увеличить напряжение на двигателе выше номинального крайне нежелательно, даже если вы уверены в том, что при выбранной скорости вращения ротора ток в обмотках не превысит допустимый. Остановка двигателя при такой подаче питания может привести к его выходу из строя. Уменьшить время установки номинального тока в обмотке можно, увеличив напряжение Vdc лишь на некоторое время, в несколько раз меньшее длительности импульса управления, но это потребует дополнительных ключей, а потому такой способ используется очень редко. Самым простым методом оказывается включение последовательно с обмоткой двигателя дополнительного сопротивления с одновременным кратным увеличением напряжения питания Vdc. Это и ускорит накопление тока в индуктивности, и не приведет к выходу двигателя из строя, так как требование по максимальному току обмотки не будет нарушено. Вот именно на этот режим и «намекает» спецификация [2]. В классической теории применим режим L/5R, но для рассматриваемого типа двигателя спецификация рекомендует режим L/4R. Обращаю внимание, что здесь имеется в виду общее сопротивление, то есть сумма собственного сопротивления обмотки RL и добавочного резистора номиналом 3RL. Ограничение на использование этого метода накладывает высокая рассеиваемая мощность на добавочных резисторах. В рассматриваемом случае при повышении напряжения питания до 4 Vdc на добавочных резисторах при малых скоростях вращения, и особенно при остановке двигателя, будет рассеиваться мощность до:

    Фактически, с учетом допустимого коэффициента нагрузки, придется использовать добавочный резистор номиналом в 160 Ом с рассеиваемой мощностью 10 Вт. Как видим, эффективность такого решения чрезвычайно низкая. Как выход из положения — использование импульсных стабилизаторов с ограничением максимального тока. Применение данного метода для биполярных шаговых двигателей было рассмотрено в [1], здесь для управления биполярным двигателем использовался драйвер с встроенной функцией нарезки, так называемый чоппинг (от англ. chopping — «нарезка»). В чем его суть? На двигатель от импульсного преобразователя подается повышенное в несколько раз напряжение, которое формирует ускоренный процесс заряда для индуктивности обмоток. После достижения заданной величины тока преобразователь переходит из режима стабилизации напряжения в режим стабилизации тока и удерживает ток обмотки на заданном уровне. Это решение нельзя назвать дешевым, но его КПД гораздо выше. Сравнение методов управления током в обмотках двигателя приведено на рис. 5.

    Рис. 5. Форма тока в обмотках шагового двигателя при различных вариантах питания [7]

    Еще одним важным моментом является правильный выбор диодов, шунтирующих обмотку двигателя (VD1-VD4, рис. 1). Назначение этих диодов — гасить ЭДС самоиндукции, возникающую при выключении управляющих ключей. Если диоды выбраны неверно, неизбежен выход из строя транзисторных ключей и устройства в целом.

    Естественно, и выбор транзистора для ключей управления обмотками должен осуществляться с учетом максимального тока коммутации, а его подключение — предусматривать необходимость заряда/разряда емкости затвора. В ряде случаев прямое подключение выходных MOSFET-транзисторов к ИМС коммутатора может быть недопустимым. В этом случае следует выбрать соответствующий драйвер для управления ключами, который обеспечит заряд/разряд их входной емкости. В некоторых решениях предлагается в качестве ключей использовать биполярные транзисторы. Это подходит только для очень маломощных двигателей с малым током обмоток. Для рассматриваемого двигателя с рабочим током обмоток I = 230 мА ток управления по базе ключа должен составить по крайней мере не менее 15 мА (хотя для нормальной работы ключа нужен ток базы 1/10 рабочего, то есть 23 мА). Но такой ток от микросхем типа 74HC74 недостижим, поэтому потребуются дополнительные драйверы для выходных ключей.

    Таким образом, оптимальным вариантом для управления коммутацией обмоток является использование подходящих по току и сопротивлению канала в открытом состоянии Rdc(on) полевых транзисторов с изолированным затвором (MOSFET) с учетом рекомендаций, описанных выше. В авторском варианте были применены транзисторы IRLML2803 с Rdc(on) = 0,25 Ом, допустимой мощностью рассеивания 540 мВ и постоянным током стока 0,93 А при температуре +70 °C. Мощность, рассеиваемая на ключах, выполненных на транзисторах IRLML280, при полной остановке ротора не превысит:

    В большинстве случаев такой оценки вполне достаточно. Поскольку детальное рассмотрение особенностей работы ключей не входит в рамки данной статьи, то для их полного расчета можно воспользоваться методикой, приведенной, например, в [6].

    В завершение еще раз небольшое напоминание: когда речь идет о частоте вращения ротора шагового двигателя, то имеется в виду именно то, о чем говорилось, — вращение ротора самого двигателя без редуктора. При этом необходимо учитывать угол поворота его ротора на один шаг. Для рассматриваемого типа двигателя он составляет 7,5°. Имеются двигатели с углом поворота на один шаг от 18° до 0,9° (чаше 1,8°). Для получения конечного результата необходимо обязательно учитывать этот параметр и коэффициент понижения частоты вращения ротора двигателя соответствующим редуктором. Все нужные параметры для правильного выбора типа двигателя серии P542-M48 приведены в спецификации [2].

    ОБОРУДОВАНИЕ
    ТЕХНОЛОГИИ
    РАЗРАБОТКИ

    Блог технической поддержки моих разработок

    Драйверы шагового двигателя: униполярный, биполярный, L298N.

    Как правило, логические сигналы для управления шаговым двигателем формирует микроконтроллер. Ресурсов современных микроконтроллеров вполне хватает для этого даже в самом ”тяжелом” режиме – микрошаговом.

    Для подключения шаговых двигателей через слаботочные логические сигналы микроконтроллеров необходимы усилители сигналов – драйверы.

    В функцию драйверов входит:

    • обеспечение необходимого тока и напряжения на фазных обмотках двигателя;
    • коммутация обмоток;
      • включение;
      • выключение;
      • смена полярности;
    • защита коммутирующих элементов от напряжения самоиндукции обмоток.

    Речь в этой статье идет о простых драйверах, достаточных для большинства приложений. Существуют драйверы с гораздо большими возможностями:

    • обеспечение быстрого нарастания тока при включении и быстрого спада при выключении;
    • уменьшение тока для фиксации положения остановленного двигателя;
    • защитные функции;
    • формирование тока и напряжения обмоток для микрошагового режима;
    • и многие другие.

    Схемы таких драйверов достаточно сложные, а в этих функциях в большинстве приложениях нет необходимости.

    Читать еще:  Sqr477f от чего двигатель

    По схеме подключения шаговые двигатели делятся на униполярные и биполярные. Драйверы для этих двух вариантов двигателей принципиально отличаются.

    Драйвер униполярного шагового двигателя.

    В униполярном режиме могут работать двигатели, имеющие следующие конфигурации обмоток.

    Напомню принцип управления униполярным шаговым двигателем. Четыре обмотки с общим проводом, подключенным к одному полюсу источника питания. Если другие выводы обмоток последовательно коммутировать к другому полюсу источника, то ротор двигателя будет вращаться.

    Для коммутации обмоток таким способом достаточно всего четырех ключей, замыкающих обмотки на землю. Схемы коммутации обмоток двух предыдущих вариантов двигателей выглядят так.

    Если последовательно замыкать ключи 1, 2, 3, 4, то ротор двигателя будет вращаться.

    Схема драйвера униполярного шагового двигателя.

    Практически ключи можно выполнить на биполярных транзисторах, но предпочтительнее использовать низкопороговые MOSFET транзисторы. Я применяю транзисторы IRF7341. Это MOSFET транзисторы с параметрами:

    • максимально допустимый ток 4 А;
    • предельное напряжение 55 В;
    • сопротивление в открытом состоянии 0,05 Ом;
    • порог включения 1 В;
    • выполнены в миниатюрном корпусе SO-8;
    • в корпусе два транзистора.

    Крайне удобный вариант для использования в драйвере униполярного шагового двигателя.

    • Нет необходимости в радиаторах охлаждения ключей;
    • очень низкое падение напряжения на открытом транзисторе;
    • малые размеры;
    • всего два 8ми выводных корпуса для драйвера двухфазного шагового двигателя.

    На биполярных транзисторах ключи с такими параметрами создать не возможно. Есть много других вариантов MOSFET транзисторов для ключей, например IRF7313 ( 6 А, 30 В, 0,029 Ом).

    Схема ключа на MOSFET транзисторе для одной фазы выглядит так.

    Ключ управляется непосредственно от микроконтроллера логическими уровнями KMOП или TTL ( 0 / +5 В). При управляющем сигнале высокого уровня (+5 В) ключ открыт, и через обмотку фазы идет ток. Диод шунтирует обмотку двигателя в обратном направлении. Он необходим для защиты транзистора от бросков напряжения самоиндукции при выключении фазы. Для управления двигателями на значительных скоростях вращения, лучше использовать высокочастотные диоды, например, FR207.

    Вот фрагмент схемы подключения униполярного шагового двигателя к микроконтроллеру.

    Защиты от коротких замыканий в этой схеме нет. Реализация защиты значительно усложняет драйвер. А замыканий обмоток шаговых двигателей практически не бывает. Я не встречался с таким явлением. Да и на фоне неприятности по поводу сгоревшего дорогого двигателя, замена транзистора не выглядит проблемой.

    Кстати, механическое заклинивание вала шагового двигателя не вызывает недопустимых токов в ключах драйвера и защиты не требует.

    А это изображение платы контроллера униполярного шагового двигателя с PIC контроллером фирмы Microchip.

    Простая плата с восьми разрядным микроконтроллером PIC18F2520 управляет:

    • двумя шаговыми двигателями с током фазы до 3 А;
    • двумя ШИМ ключами для электромагнитов;
    • считывает состояние 4х датчиков;
    • обменивается данными по сети с центральным контроллером.

    Несмотря на простоту контроллера, реализованы следующие режимы управления:

    • полно-шаговый, одна фаза на полный шаг;
    • полно-шаговый, две фазы на полный шаг;
    • полу-шаговый;
    • фиксацию положения двигателя при остановке.

    К достоинствам управления шаговым двигателем в униполярном режиме следует отнести:

    • простой, дешевый, надежный драйвер.
    • в униполярном режиме крутящий момент примерно на 40 % меньше по сравнению с биполярным режимом.

    Драйвер биполярного шагового двигателя.

    В биполярном режиме могут работать двигатели, имеющие любые конфигурации обмоток.

    У биполярного двигателя по одной обмотке для каждой фазы. Обычно две обмотки AB и CD. В первых двух вариантах четыре обмотки соединяются так, что получается две. Обмотки по очереди подключаются к источнику питания в одной полярности, затем в другой.

    Драйвер биполярного двигателя должен обеспечивать сложную коммутацию. Каждая обмотка:

    • подключается в прямой полярности к источнику напряжения;
    • отключается от источника напряжения;
    • подключается с противоположной полярностью.

    Схема коммутации одной обмотки биполярного двигателя выглядит так.

    Для обеспечения двух полярных коммутаций от одного источника питания требуется 4 ключа. При замыкании 1 и 2 ключей обмотка подключается к источнику питания в прямой полярности. Замыкание 3 и 4 ключей подает на обмотку обратную полярность напряжения.

    Сложность драйвера биполярного шагового двигателя вызвана не только большим числом ключей ( 4 ключа на обмотку, 8 ключей на двигатель), но и:

    • сложное управление верхними ключами ( 1 и 4) от логических сигналов “привязанных” к земле;
    • проблемы со сквозными токами при одновременном открывании ключей одного плеча ( 1,3 или 2,4).

    Сквозные токи могут возникать из-за не одинакового быстродействия нижнего и верхнего ключа. К примеру, нижний ключ уже открылся, а верхний – не успел закрыться.

    Схема драйвера биполярного шагового двигателя.

    Реализовать схему драйвера биполярного шагового двигателя на дискретных элементах довольно сложно. Могу показать мою схему, которая подключает биполярный двигатель к униполярному драйверу. Эта схема используется для управления биполярными двигателями от контроллера, приведенного в качестве примера в предыдущей главе.

    Схема достаточно простая. Проблема сквозных токов решается за счет резисторов 0.22 Ом в коммутируемых цепях. В момент коммутаций MOSFET транзисторов, верхний и нижний ключ оказываются одновременно открытыми на короткое время. Эти резисторы и ограничивают сквозной ток. К сожалению, они ограничивают и рабочий ток двигателя. Поэтому, несмотря на мощные транзисторы, драйвер по такой схеме можно использовать для токов коммутации не более 2 А. Схема не требует диодов для защиты от эдс самоиндукции обмоток, потому что эти диоды интегрированы в MOSFET транзисторы.

    Гораздо удобнее и практичнее использовать интегральные драйверы биполярного шагового двигателя. Самым распространенным из них является микросхема L298N.

    Драйвер биполярного шагового двигателя L298N.

    Описания этой микросхемы на русском языке практически нет. Поэтому привожу параметры L298N достаточно подробно, по официальным материалам производителя этой микросхемы – компании STMicroelectronics (datasheet l298n.pdf).

    L298N это полный мостовой драйвер для управления двунаправленными нагрузками с токами до 2 А и напряжением до 46 В.

    • Драйвер разработан для управления компонентами с индуктивными нагрузками, такими как электромагниты, реле, шаговые двигатели.
    • Сигналы управления имеют TTL совместимые уровни.
    • Два входа разрешения дают возможность отключать нагрузку независимо от входных сигналов микросхемы.
    • Предусмотрена возможность подключения внешних датчиков тока для защиты и контроля тока каждого моста.
    • Питание логической схемы и нагрузки L298N разделены. Это позволяет подавать на нагрузку напряжение другой величины, чем питание микросхемы.
    • Микросхема имеет защиту от перегрева на уровне + 70 °C.

    Структурная схема L298N выглядит так.

    Микросхема выполнена в 15ти выводном корпусе с возможностью крепления радиатора охлаждения.

    Назначение выводов L298N.

    1Sense AМежду этими выводами и землей подключаются резисторы — датчики тока для контроля тока нагрузки. Если контроль тока не используется, они соединяются с землей.
    15Sense B
    2Out 1Выходы моста A.
    3Out 2
    4VsПитание нагрузки. Между этим выводом и землей должен быть подключен низкоимпедансный конденсатор емкостью не менее 100 нФ.
    5In 1Входы управления мостом A. TTL совместимые уровни.
    7In 2
    6En AВходы разрешения работы мостов. TTL совместимые уровни. Низкий уровень сигналов запрещает работу моста.
    11En B
    8GNDОбщий вывод.
    9VssПитание логической части микросхемы (+ 5 В). Между этим выводом и землей должен быть подключен низкоимпедансный конденсатор емкостью не менее 100 нФ.
    10In 3Входы управления мостом B. TTL совместимые уровни.
    12In 4
    13Out 3Выходы моста B.
    14Out 4


    Предельно допустимые параметры L298N.

    Параметры расчетов тепловых режимов.

    ОбозначениеПараметрЗначение
    Tth j-caseТепловое сопротивление кристалл-корпус3 ºC/Вт
    Tth j-ambТепловое сопротивление кристалл-окружающая среда35 ºC/Вт

    Электрические характеристики драйвера L298N.

    Схема подключения шагового двигателя к микроконтроллеру с помощью драйвера L298N.

    Диаграмма работы этой схемы в полношаговом режиме выглядит так.

    Если не используются разрешающие входы и датчики тока, схема выглядит так.

    По функциям это аналог контроллера описанного в главе про униполярные двигатели, только для биполярного. Он также собран на PIC контроллере фирмы Microchip и управляет двумя биполярными шаговыми двигателями с током фаз до 2 А. Функциональные возможности и режимы управления двигателем те же.

    К достоинствам управления шаговым двигателем в биполярном режиме следует отнести:

    • крутящий момент примерно на 40 % больше по сравнению с униполярным режимом.
    • можно подключать шаговые двигатели с любой конфигурацией обмоток.
    Ссылка на основную публикацию
    Adblock
    detector