Бесклапанный двигатель своими руками - Авто журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесклапанный двигатель своими руками

импульсный электромагнитный реактивный двигатель

Кто безумно любит экологически чистую систему ..

Импульсный магнитный двигатель -1.

28/05/2012 Импульсный магнитный двигатель -1. Прототип. . МАГНИТНЫЙ ДВИГАТЕЛь без ТОПЛИВА, .

импульсный реактивный двигатель

импульсный реактивный двигатель импульсный реактивный . импульсный электромагнитный .

#Пульсирующий

10/03/2016 Первые патенты на пульсирующий воздушно-реактивный двигатель (ПуВРД) были получены .

ИМПУЛЬСНЫЙ РЕАКТИВНЫЙ

Импульсный реактивный двигатель . Электромагнитный . Импульсный двигатель 15 .

Импульсный детонационный

Импульсный детонационный двигатель (Пульсирующий детонационный двигатель, англ.

Электромагнитный реактивный

Электромагнитный ускоритель с . Реактивный двигатель использует радиоволны для .

импульсный реактивный двигатель —

Импульсный реактивный двигатель содержит рабочую . Известен импульсный двигатель, .

ПРИНЦИП ДЕЙСТВИЯ

Коаксиальный импульсный двигатель (см. рис. 2,3). содержит концентрически расположенные .

Магнитный двигатель своими руками:

Простейший асинхронный электромагнитный . (реактивный) . импульсный или .

RU2319039C2 — Импульсный

Известен импульсный плазменный реактивный двигатель торцевого типа на твердом рабочем .

импульсный реактивный двигатель —

Импульсный реактивный двигатель содержит рабочую . Известен импульсный двигатель, .

Реактивный двигатель дома Журнал

Собирать пульсирующий реактивный двигатель особенно приятно, зная, .

Ракетный детонационный двигатель

Обычный реактивный двигатель . как работает российский спиновый непрерывно импульсный .

Amazon: Короткоходовой

Amazon: Короткоходовой импульсный электромагнитный двигатель сейсмоисточника .

Импульсный двигатель версия 2 Doovi

Импульсный двигатель версия 2 Back. by Sergey F. Share [ f ] Share this video on Facebook. Магнитный двигатель .

Электромагнитный ускоритель с . —

Электромагнитный ускоритель с . Реактивный двигатель использует радиоволны для .

ИМПУЛЬСНЫЙ ЭЛЕКТРИЧЕСКИЙ

Импульсный электрический реактивный двигатель линейного типа, состоящий из анода и .

дробилка смд110а двигатель —

шкив клиноременный для дробилок Двигатель через . импульсный электромагнитный .

Купить короткоходовой импульсный

Купить короткоходовой импульсный электромагнитный двигатель сейсмоисточника. Описание о .

Импульсный реактивный клапан on sales — Quality Импульсный реактивный .

Импульсный реактивный клапан, You can buy good quality Импульсный реактивный клапан , we are Импульсный .

песок поставщиком цементного завода

импульсный электромагнитный реактивный двигатель;

промышленные дробилки для камня

импульсный электромагнитный реактивный двигатель;

Воздушно-реактивный бесклапанный

Импульсный . -дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель .

Импульсный плазменный

Импульсный плазменный электрический реактивный двигатель.

ИМПУЛЬСНЫЙ ЭЛЕКТРИЧЕСКИЙ

Импульсный электрический реактивный двигатель линейного типа, состоящий из анода и .

Короткоходовой импульсный

У нас вы можете скачать книгу Короткоходовой импульсный электромагнитный двигатель .

Импульсный двигатель — это. Что

Ядерный реактивный двигатель . импульсный двигатель . — Электромагнитный .

Термоядерный ракетный двигатель —

Термоядерный ракетный двигатель . что инерционно-импульсный ТЯРД . реактивный двигатель;

импульсный реактивный двигатель —

Смотреть что такое «импульсный реактивный двигатель» в других словарях: Ядерный .

PBS — Турбореактивный двигатель TJ100

Этот малый реактивный двигатель был разработан для . напр. электромагнитный клапан .

Ядерный ракетный двигатель — это.

1 Ядерный импульсный двигатель; . (электромагнитный . Ядерный реактивный двигатель .

Термоядерный ракетный двигатель —

Термоядерный ракетный двигатель . что инерционно-импульсный ТЯРД . реактивный двигатель;

импульсный реактивный двигатель —

Смотреть что такое «импульсный реактивный двигатель» в других словарях: Ядерный .

Самый мощный в мире ракетный

Электромагнитный ускоритель с . Реактивный двигатель использует радиоволны для .

ВОДЯНОЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ —

Водяной реактивный двигатель находитс .

двигатель на магнитах — Boomle

Магнитный двигатель хорош тем, . импульсный магнитный . Вечный электромагнитный .

Камера сгорания для Турбо — Электро

С такими успехами ты скоро будешь двигатель за смену . реактивный электромагнитный .

§ 9.7. Электромагнитный момент

Электромагнитный момент асинхронного двигателя создается . при котором двигатель .

Opel Corsa C Схема № 11: двигатель

9.7. Схема № 6: двигатель z14xep, . импульсный датчик . электромагнитный клапан .

Китай Импульсный струйный клапан,

Импульсный клапан, . Импульсный электромагнитный . Импульсный реактивный клапан за .

  • будова двокамерноі роторноі дробілки др
  • мини дробилка для строительного мусора
  • экспликация мельницы мельница Применения
  • мельница в домашних условиях
  • фест дробилка завод в германии
  • дробилки хабаровск иркутск
  • оборудование для флотации плавикового шпата
  • имею запчасти на дробилки
  • угледобывающие финансовая отчетность
  • мельница для помола торфобрикета
  • конусная дробилка скачать видео
  • Камень дробильнои установки
  • дробилка виброщековая вщд 440х800
  • мельница на английском языке
  • как скрафтить каменную дробилку
О нас

Мы являемся одним из крупнейших поставщиков горных машин в Китае. Мы производим мобильные дробильные установки, машины для производства песка, вертикальные шлифовальные мельницы и запасные части.

Copyright © Все права защищены | Этот шаблон сделан с by Mining Machines

Узнаем как изготовить реактивный двигатель своими руками

Самый простым реактивным двигателем является бесклапанный пульсирующий агрегат. После его изобретения стало очевидно, что он может двигать ракету даже в безвоздушном пространстве. Из-за того, что повсеместно стали использовать турбореактивные моторы, разработку рассматриваемого вида движителей приостановили. Но многие любители продолжают интересоваться, изучать и даже самостоятельно собирать агрегат. Попробуем сделать реактивный двигатель своими руками.

Мотор по патенту Локведа

Устройство можно соорудить любого размера, если строго соблюдать необходимые пропорции. Реактивный двигатель, своими руками сделанный, не будет иметь движущихся частей. Он способен функционировать на любом виде топлива, если будет предусмотрено приспособление для его испарения до входа в камеру сгорания. Однако старт производят на газе, так как этот вид топлива намного удобнее других. Соорудить конструкцию просто, да и денег уйдет не так уж много. Но надо приготовиться к тому, что работать будет с большим шумом реактивный двигатель.

Своими руками устанавливается и испаряющий распылитель для жидкого топлива. Его помещают на конец металлической трубы, через которую пропан поступает в камеру сгорания. Однако если планируется применять только газ, то это приспособление устанавливать необязательно. Можно пропан просто запускать через трубку 4 мм диаметром. Ее прикрепляют к камере сгорания при помощи фитинга на десять миллиметров. Иногда предусматривают также разные трубки для пропана, керосина и дизельного топлива.

На старте газ поступает в камеру сгорания, и при возникновении первой искры двигатель запускается. Баллоны сегодня приобрести нетрудно. Удобным является, например, имеющий одиннадцать килограмм топлива. Если предполагается большой расход, то редуктор не обеспечит необходимым потоком. Поэтому в таких случаях устанавливают просто игольчатый клапан. Баллон при этом нельзя опустошать до конца. Тогда в трубке не произойдет возгорания.

Чтобы установить свечу для искры, в камере сгорания нужно предусмотреть специальное отверстие. Его можно изготовить при помощи токарного станка. Корпус выполняют из нержавеющей стали.

Пульсирующий воздушно-реактивный двигатель Рейнста: необходимые детали

Необязательно использовать металлические трубы и другие сложные для простого обывателя детали. Если реактивный двигатель своими руками предполагается сделать совсем маленького размера, для его изготовления потребуются следующие подручные компоненты:

  • банка из стекла на четыреста миллилитров;
  • банка из жести из-под сгущенки, от которой потребуется лишь боковая часть;
  • спирт или ацетон;
  • циркуль;
  • ножницы;
  • дремель или обычное шило;
  • плоскогубцы;
  • карандаш;
  • бумага.
Читать еще:  Громко работает двигатель accent

Как сделать реактивный двигатель

В крышке от стеклянной банки делают отверстие на двенадцать миллиметров.

Для верстки диффузора на бумаге рисуют шаблон, используя циркуль. Ближний радиус берется на 6, а дальний — на 10,5 сантиметра. От сектора, который получился, отмеряют 6 см. Обрезку производят на ближнем радиусе.

Шаблон прикладывают к жестяной банке, обводят и вырезают необходимый кусок. С обоих краев отгибают по миллиметру у полученной детали. Далее делают конус и соединяют части согнутых краев. Так получают диффузор.

Затем на узкой его половинке сверлят четыре отверстия. То же самое повторяют на крышке вокруг проделанного ранее отверстия. Используя проволоку, подвешивают диффузор под отверстие крышки. Должно получиться расстояние до верхнего края примерно от 5 до 5 мм.

Осталось лишь налить в банку спирт или ацетон на пол сантиметра от дна, закрыть банку и зажечь спирт спичкой.

Советская литература для реактивных авиамоделей

Миниатюрные пульсирующие воздушно-реактивные двигатели для авиамоделей также можно изготовить самостоятельно. Некоторые любители даже сегодня используют при монтаже конструкции мотора литературу, написанную в советское время, в шестидесятых годах прошлого века. Несмотря на такой значительный промежуток времени с момента издания, она продолжает быть актуальной и способна помочь в освоении новых знаний и получения практики юными конструкторами.

Дельтообразный двигатель внутреннего сгорания

Дельтообразный двигатель (Napier Deltic) — это британский двигатель со встречным движением поршней, бесклапанный, двухтактный дизельный двигатель с продувкой нагнетателем. Был изначально разработан в середине 1940-х годов для применения на морских судах, также устанавливался на железнодорожных локомотивах. Разработан и производился компанией Napier & Son.

Цилиндры были разделены на три блока, расположенных в форме треугольника. Блоки формировали стороны с картерами, расположенными в каждой из вершин треугольника.

Термин «дельтообразный» происходит от названия греческой буквы дельта, так как в профиль двигатель соответствует треугольнику.

Содержание

  • 1 История и разработка
  • 2 Применение
    • 2.1 Военно-морской флот
    • 2.2 Применение в железнодорожном транспорте
    • 2.3 Надёжность и обслуживание
  • 3 Сравнимые двигатели
  • 4 Литература
  • 5 Примечания
  • 6 Ссылки

История и разработка [ править | править код ]

История дельтообразного двигателя начинается в 1943 году, когда Британское Адмиралтейство создало комиссию по разработке высокомощного дизельного двигателя малого веса для торпедных катеров. [1] До этого времени на британском флоте такие катера приводились в движение бензиновыми двигателями. Но бензин легковоспламеняем, что делает военные суда с силовыми установками на бензине более уязвимыми перед вражеским огнём. Это давало преимущество немецким E-boat судам, приводившимся в движение дизельными двигателями.

До тех пор дизельные двигатели имели низкое отношение мощности двигателя к его массе и невысокие обороты вращения коленчатого вала, и не могли использоваться для движения скоростных морских судов. До Второй мировой войны компания Нэпиер разрабатывала авиационный двигатель Culverin, по лицензии на разработанный в Германии дизельный двигатель со встречным движением поршней Junkers Jumo 204. Двигатель Culverin был двухтактным двигателем со встречным движением поршней. Вместо цилиндров, имеющих каждый по одному поршню и закрытых с одной стороны головкой цилиндра с клапанами впуска и выпуска и распределительным валом, основанные на Jumo двигатели использовали вытянутые цилиндры, содержащие два поршня, двигавшихся в противоположных направлениях относительно центра. Такая компоновка не использует тяжёлых головок цилиндров с клапанным механизмом, их роль выполняет вторые поршни. Недостатком такой конструкции является необходимость использования второго коленчатого вала для привода вторых поршней, разделения коленчатых валов и расположения их с каждой из сторон двигателя. Необходимо также использовать механические зубчатые передачи между двумя коленвалами, чтобы передать мощность от разделённых коленчатых валов на единый вал. Основное достоинство данной конструкции состоит в том, что она делает двигатель достаточно «плоским», что даёт возможность «утапливать» их в крыльях больших самолётов.

Британскому Адмиралтейству требовались намного более мощные двигатели, и ему было известно о разработках фирмы «Юнкерс» по двигателям с несколькими коленчатыми валами треугольной и «бриллиантовой» (diamond-form, ромбической) схем. В Адмиралтействе посчитали целесообразным взять в качестве отправной точки разработки Юнкерса для создания более мощных двигателей. Результатом была компоновочная схема «треугольник», в котором цилиндры формируют стороны, оканчивающиеся тремя коленчатыми валами — по одному в каждой вершине. Коленчатые валы соединялись шестернями, вращение которых происходило со сдвигом по фазе на соответствующие углы, и эти шестерни передавали мощность на единый выходной вал. В таком варианте имелось шесть шатунов, приводящих в движение три коленчатых вала. Различные варианты дельтообразных двигателей могут производиться с разным количеством цилиндров, хотя девяти- и восемнадцати-цилиндровые двигатели были наиболее распространены. В 1946 году Адмиралтейство заключило контракт с Английской электрической компанией — материнской компанией Нэйпер, на разработку двигателя.

Одно из конструкторских решений в двигателе позволяло сдвинутые по фазе коленчатые валы расположить таким образом, чтобы сначала открывался/закрывался выпускной порт, а потом впускной (с отставанием на 15-20 градусов). Это позволяет осуществлять небольшой наддув. Такие двигатели называют «uniflow» — продувка цилиндра происходит без изменения направления движения газов (в отличие от петлевой продувки), что улучшает удаление продуктов сгорания/коэффициент наполнения цилиндра. Порты располагаются в порядке впуск/выпуск/впуск/выпуск/впуск/выпуск, если обходить треугольник по кругу (впускные и выпускные порты имеют вращательную симметрию).

Более ранние попытки разработки подобных двигателей потерпели неудачу из-за трудностей при попытках расположить поршни в таком положении, которое позволяло бы им двигаться корректно.

Эта проблема была решена Н. Перварденом из Инженерной лаборатории Адмиралтейства. Он предложил задать одному из коленчатых валов направление вращения против часовой стрелки, чтобы обеспечить корректный сдвиг по фазе между валами. Конструкторы фирмы Нэйпер разработали для этой идеи необходимую шестерённую передачу.

Хотя в конструкции двигателя не требовалось наличия тарельчатых клапанов, он имел распределительные валы — по одному на каждую сторону. Они использовались исключительно для привода топливных насосов. Каждый цилиндр имел собственный насос, приводимый в движение своим кулачковым механизмом.

Читать еще:  Rotax 650 двигатель характеристики

Применение [ править | править код ]

Военно-морской флот [ править | править код ]

Развитие началось в 1947 году, первый образец дельтообразного двигателя был построен в 1950 году. К январю 1952 года шесть двигателей имелось в распоряжении, что достаточно для полноценной разработки и продолжительных испытаний.

S212, трофейный немецкий E-Boat, приводимый в движение дизельными двигателями Мерседес-Бенц, был выбран для испытаний, поскольку силовая установка была примерно равна по мощности новому 18-цилиндровому дельтообразному двигателю. Два двигателя Мерседес-Бенц были заменены на дельтообразные двигатели. Компактность дельтообразных двигателей можно продемонстрировать наглядно: они были в два раза меньше «родных» двигателей Мерседес-Бенц. Вес дельтообразных двигателей составлял примерно пятую часть от веса других современных двигателей аналогичной мощности. [1]

После успешных испытаний дельтообразные двигатели стали универсальной силовой установкой для небольших и быстрых военно-морских судов. Военно-морские силы Великобритании впервые использовали их в качестве силовых установок быстроходных патрульных катеров типа Dark. [2] Впоследствии они устанавливались на многих других типах скоростных катеров и кораблей малого водоизмещения.

Применение в железнодорожном транспорте [ править | править код ]

Дельтообразные двигатели использовались в двух серийных типах британских тепловозов: классов 55 и 23, построенных в 1960-х годах, а также в прототипе English Electric Deltic.

Надёжность и обслуживание [ править | править код ]

В то время как дельтообразные двигатели были успешными и очень мощными для своих размеров и веса, они были очень «капризными» устройствами, требующими аккуратного обращения. Их ремонт не мог быть выполнен «на месте». Приходилось полностью демонтировать двигатель и заменять на исправный. Дельтообразные двигатели легко изымались после поломки, и обычно отправлялись производителю для ремонта, хотя после того как исходные контракты истекли, Британские военно-морские силы и «Британские железные дороги» основали собственные мастерские для ремонта и обслуживания этих двигателей. [3]

Пульсирующий воздушно-реактивный двигатель

Пульсирующий воздушно-реактивный двигатель (ПуВРД) — вариант воздушно-реактивного двигателя. В ПуВРД используется камера сгорания с входными клапанами и длинное цилиндрическое выходное сопло. Горючее и воздух подаются периодически.

Цикл работы ПуВРД состоит из следующих фаз:

  • Клапаны открываются и в камеру сгорания поступает воздух и горючее, образуется воздушно-топливная смесь.
  • Смесь поджигается с помощью искры свечи зажигания. Образовавшееся избыточное давление закрывает клапан.
  • Горячие продукты сгорания выходят через сопло, создавая реактивную тягу и технический вакуум в камере сгорания.

ПуВРД обладает большим удельным импульсом по сравнению с ракетными двигателями, но уступает по этому показателю турбореактивным двигателям. Существенным ограничением является также то, что этот двигатель требует разгона до рабочей скорости 100 м/с и его использование ограничено скоростью порядка 250 м/с.

Содержание

  • 1 История
  • 2 Принцип действия и устройство ПуВРД
    • 2.1 Другие пульсирующие ВРД
    • 2.2 Область применения ПуВРД
  • 3 Примечания
  • 4 Литература
  • 5 Видео

История [ править | править код ]

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены (независимо друг от друга) в 1860-х годах Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия) [1] .

Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 тыс. единиц.

После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric).
Результаты этих разработок заинтересовали военных США и СССР. Был разработан ряд опытных и экспериментальных образцов. Первоначально основная проблема ракет «воздух-поверхность» заключалась в несовершенстве инерциальной системы наведения, точность которой считалась хорошей, если ракета с дальности в 150 километров попадала в квадрат со сторонами 3 километра. Это привело к тому, что с боезарядом на основе обычного взрывчатого вещества данные ракеты имели низкую эффективность, а ядерные заряды в то же время имели ещё слишком большую массу (несколько тонн). Когда же появились компактные ядерные заряды — уже была отработана конструкция более эффективных турбореактивных двигателей, поэтому пульсирующие воздушно-реактивные двигатели не получили широкого распространения.

Представители ракет «воздух-поверхность» с пульсирующим воздушно-реактивным двигателем.

  • Шаблон:Флаг Третьего рейхаFi-103
  • 10Х · 14Х · 16Х — благодаря использованию двух двигателей был достигнут практический предел скорости полёта для ПуВРД — 980км/ч (270 м/с).
  • JB-2

В начале 2010-х годов наблюдается возрождение интереса к ПуВРД: их разработку и испытания проводят General Electric, Pratt & Whitney, SNECMA, а также отечественное НПО «Сатурн» [2] .

Принцип действия и устройство ПуВРД [ править | править код ]

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигателей, до 250 Гц — для малых двигателей, предназначенных для авиамоделей. [3]

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра [4] . Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере, клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее — оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

Читать еще:  Двигатель mivec как дизель

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды — малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламеняется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) — ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме, ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД — его работа описывается циклом Хамфри (Humphrey), в то время как работа ПВРД и ТРД описывается циклом Брайтона.
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автоколебания становятся устойчивыми, а амплитуда колебаний каждого элемента — максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно — это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи — поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска [5] ).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла. [6] Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей.

Двигатели характеризуют рядом параметров:

  • удельная тяга — отношение создаваемой двигателем тяги к массовому расходу топлива;
  • удельная тяга по весу — отношение тяги двигателя к весу двигателя.

В отличие от ракетных двигателей, тяга которых не зависит от скорости движения ракеты, тяга воздушно-реактивных двигателей (ВРД) сильно зависит от параметров полёта — высоты и скорости. Пока не удалось создать универсальный ВРД, поэтому эти двигатели рассчитываются под определенный диапазон рабочих высот и скоростей. Как правило, разгон ВРД до рабочего диапазона скоростей осуществляется самим носителем либо стартовым ускорителем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector