Авиамодели двигатели расход топлива - Авто журнал
13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Авиамодели двигатели расход топлива

Авиамодели двигатели расход топлива

Выбор ДВС двигателя
Обзоры — Комплектующие авиамоделей
Автор: Administrator

Первое знакомство с ДВС. Проблема выбора

На написание данной статьи меня подвигли время от времени встречающиеся на форумах вопросы типа: Вливаюсь в ряды ДВС, с чего начать? Или такой: С чего начать освоение ДВС ? Ну, или сразу: Посоветуйте калилку . На RC-Aviation, помнится, задавался вопрос такого плана: «Приобрел такой-то движок, посоветуйте самолет!»

Чаще, конечно, задают вопрос про то, какой двигатель подойдет для данной модели. С таким вопросом проще, но, тем не менее, он выдает новичка, который пока не в состоянии без посторонней помощи сделать осознанный выбор. Поэтому данная статья предназначена исключительно для тех, кто еще только делает первые шаги, пытаясь приобщиться к столь увлекательному направлению в авиамоделизме, как постройка (возможно) и полеты (обязательно!) на радиоуправляемых моделях самолетов с ДВС. А продвинутым моделистам я буду благодарен за полезные рекомендации и дополнения к данной статье.

Хотя существует много разновидностей двигателей внутреннего сгорания, я оговорюсь сразу, что речь пойдет исключительно о самолетных движках. Конечно, существуют модификации одного и того же двигателя для разного класса моделей, например, авиа и вертолетные, и между ними много общего, но никакими другими, кроме авиа, я не занимался, посему писать буду только о них. Кроме того, объем статьи не позволяет охватить все аспекты вопроса, поэтому, при наличии интереса, тема может быть продолжена.

Итак, вы загорелись желанием летать на модели с ДВС, но не знаете с чего начать, что это за «зверь» такой, что он за собой потянет и т.д., а главное, и именно об этом данная статья, что выбрать? Ведь то, что он за собой потянет, во многом зависит как раз от вашего выбора. Почему я ставлю вопрос именно так? Потому что в приведенных выше ссылках на обсуждения на форумах попадаются советы типа этого: «Эх, если бы сейчас начинал, то сразу бы взял «бензинку» 20 кубов. » С моей точки зрения ответ такого типа выдается как раз из-за того, что «не сейчас начинаю», а уже имею некоторый опыт постройки, полетов, настройки и эксплуатации двигателей разных типов. Почему-то когда новичок задает вопрос с чего начать применительно к электричкам, то ему не отвечают в таком ключе: «Стройте Экстру полтора метра размахом, с мотором под киловатт, регулятором на 100 ампер, батареей 6S 5000 mah…» и т.д. А говорят – начните с Цессны-150 из потолочки или чего-нибудь похожего…

Так и здесь. Я не буду предлагать начинающему сразу ДВС на бензине по одной простой причине – такой выбор означает слишком высокую стоимость «входного билета» в ДВС-направление. И не только из-за цены самого двигателя и того, что ему необходимо. Но и из-за размерности того класса моделей, к которым он бы подошел, с соответствующими ценами их постройки или покупки. А во что обойдется риск разбить большую дорогую, будь то в покупке, или в постройке модель?

Самый маленький известный мне модельный ДВС на бензине это 9-кубовый NGH 9CC Petrol Engine for Radio Control Aeroplane GT9 .

Да и то он пока еще очень «сырой» в плане его доводки, а цена такова, что за эти деньги можно купить четыре (!) небольших (три с половиной кубика) калильных ДВС. Но об этом ниже.

Итак, я уже обозначил главный критерий, которым буду руководствоваться. Это цена вопроса. Исходя из этого критерия, из рассмотрения выпадают и четырехтактные двигатели. Пороговым значением для себя я установил цену за движок в 100 долларов с доставкой. Естественно, цена двигателя практически прямо пропорциональна его размеру (кубатуре) с некоторым разбросом по отдельным экземплярам и торговым наценкам у разных продавцов. В любом случае, я ограничился 10-ти кубовым двигателем, как самым большим из рассмотренных здесь калильных двухтактных ДВС.

Вторым важным критерием я считаю применимость двигателя к моделям смежных классов, то есть его универсализм. Ведь если ваш двигатель подходит только для данного класса моделей, то он, как правило, превращается в двигатель одного самолета. Еще один такой же самолет обычно иметь не хочется, а на другой самолет нужно покупать новый мотор. А это возвращает нас к первому критерию – цене вопроса.

Третьим критерием, после того, как с размерностью двигателя определились, является марка производителя. Фактически речь здесь идет о качестве изделия за ваши деньги. Понятно, что движки от известных производителей стоят дороже. Признанным лидером в указанном классе моторов является японская фирма O.S.Engine . Но среди недорогих двигателей лично мне известны три производителя с сопоставимыми между собой ценами. Это ASP, GMS и JBA. Есть еще двигатели LEO, но о них я только читал. Выглядят попроще, чем ASP, а качество, по отзывам, не выше.

Наиболее известны и популярны у нас двигатели ASP (также продаваемые под маркой MAGNUM). Кроме того, у этого производителя, пожалуй, самая большая линейка недорогих движков, от мелких, до достаточно больших. Вдобавок ко всему они самые доступные в плане легкости покупки. Почти всегда есть в наличии (хоть и не все размерности) на всенародно любимом Хоббикинге из китайского Гонконга и в других популярных Интернет-магазинах. Наш выбор в итоге будет сделан именно из этой линейки двигателей.

Но я забегаю вперед, так как обязан хотя бы несколько слов сказать о других производителях двигателей, поскольку имею в наличии экземпляры всех вышеперечисленных марок, а также еще Thunder Tiger, Super Tigre и Evolution. Начну с конца. Двигатели марки Evolution оставляют наиболее приятное впечатление, даже когда просто держишь в руке какой-то экземпляр. Чувствуется продуманный дизайн и стремление к инновациям. Он просто красив!

У Evolution даже заводская регулировка может корректироваться только в небольших пределах из-за установленных ограничителей на главную иглу жиклера и иглу холостого хода. Ограничители, конечно, можно снять, но новичку этого лучше не делать. Все уже отрегулировано до него. И если возникает проблема с запуском или устойчивостью работы, то, скорее всего, причину надо искать вне двигателя. Производится двигатель в Китае, но разработан в США.

Итальянские двигатели Super Tigre – хорошо известны в нашей стране моделистам старшего поколения, особенно спортивные движки, поскольку сама марка одна из старейших. Хоббийные двигатели этой марки имеют оригинальную конструкцию глушителя, с цилиндрической проставкой, позволяющей менять угол его установки.

Это, конечно, добавляет немного веса из-за лишней детали, но глушитель можно направить по полету, как на снимке, либо наклонить вверх или вниз. Производство двигателей перенесено в Китай. Ничего выдающегося ни в качестве изготовления, ни в характеристиках я не обнаружил.

Следующая марка двигателей, о которой нужно сказать, это движки Thunder Tiger или ТТ тайваньского производства. Китай, но другой. Эти движки позиционируются чуть выше двигателей ASP, и они соответственно немного дороже. Серия GP не имеет опорных шарикоподшипников коленвала (как серия LA у двигателей O.S.). Такие подшипники имеют двигатели серии PRO (на снимке).

Мне нравятся двигатели этой марки. Я бы поставил их вместе с двигателями Evolution на одну ступеньку выше, чем ASP.

Переходим к «бюджетным» движкам. На самую низкую ступеньку по качеству изготовления я бы поставил JBA.

Никому не рекомендую. Вот, например, как выглядит вход в глушитель на JBA 0.39.

Обратите внимание на ступеньку в канале. То есть выхлопные газы из цилиндра, двигаясь по расширяющемуся каналу, вдруг влетают в глушитель и наталкиваются на эту ступеньку! Мелочь? Здесь нарушена азбучная истина, что на пути движущихся газов не должно быть никаких препятствий. Это ухудшает процесс продувки цилиндра, что приводит к потере мощности. Доработанный по мере возможности канал, вкупе с другими мероприятиями дал прибавку в 500 об/мин, но не избавил от продольного люфта коленвала в пол сантиметра и других «прелестей» этого движка.

Следующими в списке идут двигатели GMS.

Тут я, признаться, не до конца определился с мнением по этим движкам (у меня только один – GMS40A, показанный на снимке). Во-первых, продаваемые у нас движки дешевле ASP, продаваемых здесь же. Кроме того, поставляются уже со свечой (к ASP надо докупать). Это делает их еще дешевле. Качество «на ощупь» ничуть не хуже. Движок длинноходный и крутит почти как ASP 46 с таким же винтом. Поясню. Один и тот же рабочий объем двигателя может быть достигнут за счет диаметра цилиндра или за счет хода поршня. Двигатели, в которых рабочий объем получен за счет большего диаметра цилиндра и уменьшения его хода, называются короткоходными и наоборот. Длинноходные движки имеют, как правило, больший крутящий момент, менее оборотисты, а из-за роста габаритов более тяжелы. Сравните размеры двух поставленных рядом двигателей почти одинаковой кубатуры (0.39 и 0.40). Слева короткоходный и потому легкий JBA, справа – длинноходный, но тяжелый GMS. А тут еще невероятно большой глушитель с цилиндрической вставкой, видной на снимке вверху.

В целом, пожалуй, все о GMS. Движки этой марки менее распространены, но если покупать у нас, то это хорошая альтернатива ASP. А к последним мы как раз и переходим. По указанным выше критериям был сформирован диапазон типоразмеров двигателей для рассмотрения. Данные сведены в следующие таблицы. В первой из них – внешние габариты.

Габаритные размеры двигателей ASP

Обозначения – согласно рисунку ниже

Модель двигателя

A

B

C

D

E

F

G

H

J

S (резьба)

Радиоуправляемый самолёт

Радиоуправля́емый самолёт (РУ-самолёт, RC-самолёт) это модель самолёта, которая управляется с помощью радио или инфракрасной связи. Вес радиоуправляемых моделей начинается с десятков граммов [1] и может достигать десятков [2] , а в военной отрасли даже сотен килограммов [3] .

Содержание

  • 1 Классификация
    • 1.1 Тип
    • 1.2 Силовая установка
      • 1.2.1 Модели с электродвигателями
      • 1.2.2 Модели с ДВС
      • 1.2.3 Модели с реактивными двигателями
    • 1.3 Размеры
    • 1.4 Управление
  • 2 Комплект поставки
  • 3 Радиус действия
  • 4 См. также
  • 5 Примечания

Классификация [ править | править код ]

Тип [ править | править код ]

В основном радиоуправляемые модели делятся на следующие типы:

  • Тренировочные (или «тренеры») — простые, как правило, недорогие модели-высокопланы, выполненные по нормальной аэродинамической схеме с V-образным крылом. Реже встречаются тренеры-низкопланы, которые рассчитаны на продолжение обучения. Просты в управлении, умерены в маневренности и скорости. Конструкция модели прощает большинство ошибок начинающего «пилота». Для этих целей часто планер самолёта выполнен не в виде обтянутого силового набора, а из вспененного пластика. Редко тренировочные самолёты своим видом напоминают реально существующий прототип из настоящей авиации. Облик модели принесён в жертву простоте управления и живучести всей конструкции в целом. Встречаются «тренеры» с тянущими и толкающими винтами приводимыми в действие ДВС или электродвигателями.
  • Пилотажные — модели рассчитанные на выполнение сложного и высшего пилотажа. Подходят опытным «пилотам». В массе своей это низкопланы, среднепланы и бипланы. Оснащаются ДВС, электродвигателями или реактивными двигателями. Пилотажные модели бывают как напоминающие реально-существующий прототип, так и нет. Часто маневренность и тяговооружённость самолёта ставится во главу угла, и модель лишь напоминает самолёт как таковой. Часто кроме классической аэродинамической схемы применяется схема летающее крыло.
  • Фан-флайеры — модели рассчитанные на выполнение сложного, высшего пилотажа и, так называемого, 3D-пилотажа. Такие модели оснащены очень крупными управляющими поверхностями, отклоняющимися на большой градус и мощными и быстрыми исполнительными механизмами. Как правило тяговооружённость фан-флаеров сильно выше единицы. Большинство таких моделей построены по нормальной аэродинамической схеме, но не претендуют на копийность.
  • Копии и полукопии — масштабные модели своим внешним видом, типом силовой установки и летными характеристиками максимально приближенные к реально существующим или существовавшим самолётам. Как правило, такие самолёты имеют убираемые шасси и механизацию крыла. Реже встречаются копии выполненные столь подробно, что имеют управление аэродинамическими и колёсными тормозами, открывающимся фонарём кабины, тормозным парашютом, бортовыми огнями и т. п. Оснащаются ДВС, электродвигателями или реактивными двигателями.
  • Военного и специального назначения. Встречаются модели для самого разного ряда задач: аэрофотосъемка, трансляция и ретрансляция сигнала, ударные задачи, проведения экологических экспериментов, доставка медикаментов, продуктов и почты при оказании экстренной помощи в процессе ликвидации аварий и катастроф в труднодоступных и опасных для человека местах, а также для военной, инженерной, радиационной, химической и биологической разведки. Множество подобных летательных аппаратов управляются не по радио, а перемещаются по заранее заложенному в модель маршруту. В последний могут вноситься поправки по радиоканалу.

Силовая установка [ править | править код ]

Как правило, РУ самолёты оснащаются электро- или двигателями внутреннего сгорания. Реже встречаются модели оснащённые реактивными двигателями.

Модели с электродвигателями [ править | править код ]

До широкого распространения литий-полимерных аккумуляторов это был достаточно дорогой и ограниченный вариант силовой установки. С появлением же последних, тяговые аккумуляторы моделей стали сравнительно лёгкими и мощными (большая токоотдача). Как правило, питание всей системы происходит от тягового аккумулятора емкостью приблизительно от 70 до 7000 мА·ч и напряжением 3,7-37 Вольт. Наряду с LiPo аккумуляторами все ещё используются Ni-MH и NiCd, а в последнее время на рынке начали появляться LiFePO4 (см. статью Аккумуляторы для радиоуправляемых моделей).

Электронный регулятор хода (ESC) зачастую оснащен преобразователем (BEC) напряжения тягового аккумулятора к бортовому (4,8 либо 6 Вольт). Это требуется для питания сервомеханизмов, приёмника, гироскопа и прочей бортовой аппаратуры.

Двигатель в большинстве современных РУ самолётах бесколлекторный трёхфазный бездатчиковый. Обороты большинства подобных двигателей лежит в пределах 150-7000 KV(обороты на вольт), мощность — от 10 Вт до 15кВт. Вес от единиц граммов до трёх килограммов. Основное распространение получили двигатели с ротором вращающимся вокруг статора (так называемые outrunner (англ.) ). Реже встречаются с ротором вращающимся внутри статора (так называемые inrunner (англ.) ). Подобные двигатели в отличие от ДВС применяются как с пропеллерами так и с импеллерами. Коллекторные двигатели все ещё применяются, хотя быстро вытесняются бесколлекторными.

Модели с электродвигателями представлены, как правило, летательными аппаратами от 7-8 граммов до 10 кг. Электрическая силовая установка используется на моделях разных классов.

  • Преимущества:
    • Модель всегда чистая: не имеет следов топлива, смазки, выхлопа, характерного запаха, — что удобно для хранения и обслуживания в жилом помещении.
    • Двигатель не может заглохнуть.
    • Двигатель можно полностью выключать и включать неограниченное количество раз в течение полета (крайне полезное свойство для мотопланеров), остановленный пропеллер создает заметно меньшее воздушное сопротивление, чем постоянно вращающийся на небольших оборотах.
    • Гораздо проще в обслуживании и предполетной подготовке. Не требует кропотливой настройки, специфических инструментов. Последнее сводится к зарядке или замене аккумуляторной батареи.
    • Работа электродвигателя практически не зависит от внешних условий (температура воздуха, влажность, атмосферное давление).
    • Звук работы двигателя обычно значительно тише.
    • Возможность запуска модели в жилых помещениях.
    • Возможность постройки модели как больших так и очень мелких масштабов.
    • Модель не меняет массы и центровки в течение полёта, либо модель проще проектировать, поскольку не нужно учитывать изменение массы топлива.
    • Аккумулятор не разряжается внезапно в отличие от выработки жидкого топлива. Сперва уменьшается тяга, что служит сигналом о скором истощении силового аккумулятора. По той же причине модель всегда будет оставаться управляемой (двигатель требует значительно больше энергии чем сервомеханизмы).
    • Значительный моторесурс, относительная дешевизна электродвигателей и запасных частей.
    • Удобство центровки модели с помощью тяжёлого силового аккумулятора.
    • Легче подобрать геометрически подходящий двигатель для копийных моделей.
  • Недостатки:
    • LiPo аккумуляторы требуют аккуратного к себе отношения, поскольку пожароопасны.
    • Тяга двигателя заметно изменяется во время полета, поскольку аккумулятор разряжается, и его напряжение падает.
    • Определенная сложность выбора связки аккумулятор — двигатель — регулятор хода, вызванная зависимостью параметров каждого из этих устройств от параметров другого устройства, а вместе — сильно влияют на массу модели и её летные характеристики.
    • Отсутствие выхлопа и характерного шума работы ДВС, роднящих модель с полноценным прототипом, и создающих определенную «атмосферу».
    • Довольно медленная зарядка аккумуляторных батарей, жесткие требования к процессу заряда некоторых типов аккумуляторов, как следствие, необходимость использовать сложные зарядные устройства.
    • Аккумуляторы обычно имеют большую массу (от 15 до 60 % от массы модели), и требуют правильного расположения в отсеках модели для избежания повреждения бортовой аппаратуры тяжелым аккумулятором при ударе о землю.
Модели с ДВС [ править | править код ]

Модели с ДВС представлены, как правило, летательными аппаратами от 700—1000 граммов до десятков кг. Применяются двухтактные или четырёхтактные двигатели. Основное распространение имеют калильные двигатели, значительно реже встречаются компрессионные, пневматические [4] или бензиновые двигатели. Наибольшее распространение имеют одноцилиндровые атмосферные двигатели. К экзотике можно отнести роторные [5] , оппозитные, рядные многоцилиндровые [6] , звездообразные [7] , инжекторные и двигатели с турбонаддувом. Иногда встречаются многомоторные модели.

Бортовое питание обеспечивается независимым от двигателя источником энергии.

  • Преимущества:
    • После заправки топливом модель снова может подниматься в воздух.
    • Дымовой выхлоп и характерный шум работы ДВС, роднящих модель с полноценным прототипом.
    • По мере выработки топлива модель становится легче (как правило, на 10-25 %).
    • Тяговые характеристики не меняются в течение всего полёта.
  • Недостатки:
    • Больше шума в отличие от электроверсий.
    • Двухтактные ДВС имеют характерный высокий звук работы, отличающийся от «больших» авиационных двигателей.
    • Необходимость регулярного обслуживания ДВС.
    • Трудности содержания модели в чистоте: следы топлива, смазки, выхлопа, характерный запах. Неприемлемо для хранения и обслуживания в жилом помещении. Кроме того, требует соответствующей обработки модели для исключения повреждения её конструкции компонентами топлива.
    • Требует до- и послеполётного обслуживания, специфических инструментов. Особенно с калильными двигателями.
    • Топливо сравнительно дорого. Для калильных двигателей используются смеси, основанные на метаноле и масле, касторовом либо синтетическом.
    • Модель, у которой «сел» аккумулятор теряет управление не выключая двигатель и не снижая его обороты. Заметить тенденцию к разрядке аккумулятора в воздухе не просто.
    • Зажигание бензинового двигателя создает ощутимые помехи для бортового приёмника.

Вниманию начинающих моделистов

В публикации представлен перечень часто задаваемых вопросов и ответы на них

Какой радиус действия пульта управления у радиоуправляемых моделей?

Радиоаппаратура работает на расстоянии порядка 200 м при условии прямой видимости модели, нормального заряда батарей приемника и передатчика, а также отсутствия радиопомех.

Какой расход топлива у радиоуправляемых моделей с ДВС?

Одного бака топлива хватает для непрерывной езды в течение 15-20 минут. Таким образом, одного галлона топлива (3,81 л.) хватает примерно на 8 часов езды.

Какая максимальная скорость у моделей?

Максимальная скорость модели с ДВС зависит от ряда факторов (настройки двигателя, тип топлива, качество покрытия, используемые покрышки, передаточное отношение, наличие коробки передач). Как правило, максимальная скорость от 70-100 км/ч в зависимости от модели. Модели с электродвигателем опять же в зависимости от модели и двигателя развивают максимальную скорость от 30 до 70 км/ч. Как правило, у моделей с электро-двигателем лучше динамика, а у моделей с ДВС — мощность и скорость.

Радиоуправляемые модели Readyset действительно полностью готовы к работе?

Готовые комплекты радиоуправляемых моделей действительно укомплектованы всеми необходимыми элементами, собраны и настроены для возможности начать их эксплуатацию сразу после покупки (после установки батареек и заправки топливом). При этом необходимо иметь ввиду, что двигатели внутреннего сгорания требуют выполнения обязательной процедуры обкатки и настройки. Длительность процедуры обкатки – порядка 2-3 баков топлива. Настойка двигателя может занимать 5-10 минут в зависимости от навыков владельца.

На сколько легко обращаться с радиоуправляемыми моделями с ДВС?

Обращение с моделями с ДВС требует некоторых навыков и знаний, в первую очередь по настройке двигателя. Эти знания достаточно легко приобрести, и, как правило, необходимые навыки приходят уже в процессе обкатки двигателя. Также, настройка двигателя необходима при существенном изменении погодных условий и типа используемого топлива. Процедуры обкатки и настройки описаны в инструкциях, прилагаемых к моделям. Т.е. модели с ДВС все-таки сложнее в эксплуатации по сравнению с моделями с электродвигателями. Также, модели с ДВС более «грязные», нежели модели с электродвигателями, требуют периодического ухода и чистки. При всем при этом данные недостатки ДВС полностью компенсируются его достоинствами.

Как запускается двигатель внутреннего сгорания радиоуправляемых моделей?

В зависимости от того, оборудована ли конкретная модель ручным стартером или предусматривается запуск двигателя с помощью стартового стола, процесс запуска ДВС может отличаться, но при этом суть процесса остается одинаковой. После заправки топливом, установки баратеей и включения радиоаппаратуры модель готова для запуска. Для этого необходимо подключить накаливатель свечи (поставляется в комплекте), прижав его контакты к верхней части свечи, которая выступает из корпуса головки двигателя. При этом через спираль свечи проходит ток, она накаляется и готова к обеспечению возгорания топливной смеси. Далее необходимо провернуть поршень двигателя с помощью ручного стартера (дернув за веревку) или прижав шасси шестеренкой двигателя к маховику стартового стола (после чего двигатели стартового стола начнут работать и прокручивать двигатель модели). Через несколько секунд после запуска двигателя необходимо отсоединить накаливатель свечи.

Что такое накаливатель свечи для радиоуправляемых моделей?

Приспособление, работающее от батареек типа D или аккумуляторов, позволяющее накаливать спираль свечи. Один контакт накаливателя присоединяется к контакту свечи, второй – на корпус. После запуска двигателя и отсоединения накаливателя спираль остается в накаленном состоянии за счет тепловой энергии сгорания топливной смеси в камере сгорания.

Что такое стартовый стол для радиоуправляемых моделей?

Специальное устройство для запуска ДВС, как правило, работающее от двух батарей 7,2V. Представляет собой подставку, оборудованную 1-2 мощными электродвигателями и маховиком. На стартовый стол ставится модель таким образом, что бы шестеренка двигателя находилась над маховиком стартового стола. После нажатия на модель и соответственно на верхнюю крышку стартового стола маховик начинает выступать над крышкой, электродвигатели стола начинают вращаться и прокручивать двигатель модели, после чего он запускается (при подключенном накаливателе свечи). С помощью стартового стола можно запускать любые модели, имеющие специальную проточку в днище шасси для доступа к шестеренке двигателя. С помощью стартового стола ДВС запускается очень легко.

Двигатель для авиамоделей

Пилотирование самолетов стало увлечением, объединившим взрослых и детей со всего мира. Но с развитием данного развлечения развиваются и движители для мини самолетов. Самый многочисленный двигатель для самолетов такого типа является электрический. Но с недавних пор на арене двигателей для RC авиамоделей появились реактивные двигатели (РД).

Они постоянно дополняется всевозможными инновациями и придумками конструкторов. Задача перед ними стоит довольно сложная, но возможная. После создания одной из первых моделей уменьшенного двигателя, которая стала значимой для авиамоделирования, в 1990-х годах изменилось многое. Первый ТРД был 30 см в длину, около 10 см в диаметре и весом в 1,8 кг, но за десятки лет, у конструкторов получилось создать более компактную модель. Если основательно взяться за рассмотрение их строения, то можно поубавить сложностей и рассмотреть вариант создания собственного шедевра.

Устройство РД

Турбореактивные двигатели (ТРД) работают благодаря расширению нагретого газа. Это самые эффективные двигатели для авиации, даже мини работающие на углеродном топливе. С момента появления идеи создания самолета без пропеллера, идея турбины стала развиваться во всем обществе инженеров и конструкторов. ТРД состоит из следующих компонентов:

  • Вал;
  • Диффузор;
  • Колесо турбины;
  • Камера сгорания;
  • Компрессор;
  • Статор;
  • Конус сопла;
  • Направляющий аппарат;
  • Подшипники;
  • Сопло приема воздуха;
  • Топливная трубка и многое другое.

Принцип работы

В основе строения турбированного двигателя лежит вал, который крутится при помощи тяги компрессора и нагнетает быстрым вращением воздух, сжимая его и направляя из статора. Попав в более свободное пространство, воздух сразу же начинает расширяться, пытаясь обрести привычное давление, но в камере внутреннего сгорания он подогревается топливом, что заставляет его расшириться еще сильней.

Единственный путь для выхода воздух под давлением — выйти из крыльчатки. С огромной скоростью он стремится на свободу, направляясь в противоположную от компрессора сторону, к крыльчатке, которая раскручивается мощным потоком, и начинает быстро вращаться, придавая тяговой силы всему движку. Часть полученной энергии начинает вращать турбину, приводя в действие компрессор с большей силой, а остаточное давление освобождается через сопло двигателя мощным импульсом, направленным в хвостовую часть.

Чем больше воздуха нагревается и сжимается, тем сильней нагнетаемое давление, и температура внутри камер. Образовываемые выхлопные газы раскручивают крыльчатку, вращают вал и дают возможность компрессору постоянно получать свежие потоки воздуха.

Виды управления ТРД

Существует три вида управления двигателем:

Электронный блок управления ТРД jet GR180

Ручной. Самый простой из способов, который разгоняет двигатель электрическим статором до минимальных оборотов 3000 об/мин. При таких оборотах на свечу накала подается газ, и после воспламенения обороты увеличиваются вдвое. При стабильной тяге, подача газа отключается и начинается стабильная подача жидкого топлива. Недостаток управления в полном отсутствии информации о работе движка.

  • Автоматический. Запуск с тумблера на пульте управления. Стартер раскручивает вал до рабочих оборотов, пока электронный блок контролирует зажигание, старт и все остальные показатели. Для остужения движка при выключении блок прокручивает вал еще несколько раз.
  • Полуавтоматический. Система управления в полуавтоматическом режиме схожа с предыдущим видом. Она отличается только подачей газа с пульта управления. Все процессы, обороты и температуры электронный блок регулирует самостоятельно.
  • Виды двигателей для авиамоделей

    Реактивные двигатели на авиамодели бывают нескольких основных типов и двух классов: воздушно-реактивные и ракетные. Некоторые из них устарели, другие слишком затратные, но азартные любители управляемых авиамоделей пытаются опробовать новый двигатель в действии. Со средней скоростью полета в 100 км/час авиамодели становятся только интересней для зрителя и пилота. Популярнейшие типы двигателя отличаются для управляемых и стендовых моделей, в силу разного КПД, веса и тяги. Всего типов в авиамоделировании немного:

    • Ракетный;
    • Прямоточный воздушно-реактивный (ПРВД);
    • Пульсирующий воздушно-реактивный (ПуРВД);
    • Турбореактивный (ТРД);

    Ракетный используется только на стендовых моделях, и то довольно редко. Его принцип работы отличается от воздушно-реактивного. Основным параметром здесь выступает удельный импульс. Популярен из-за отсутствия необходимости взаимодействия с кислородом и возможности работы в невесомости.

    Прямоточный сжигает воздух из окружающей среды, который всасывается из входного диффузора в камеру сгорания. Воздухозаборник в этом случае направляет кислород в двигатель, который благодаря внутреннему строению заставляет нагнетать давление у свежего потока воздуха. Во время работы, воздух подходит к воздухозаборнику со скоростью полета, но во входном сопле она резко уменьшается в несколько раз. За счет замкнутого пространства нагнетается давление, которое при смешивании с топливом выплескивает из обратной стороны выхлоп с огромной скоростью.

    Пульсирующий работает идентично прямоточному, но в его случае сгорание топлива непостоянное, а периодичное. При помощи клапанов топливо подается только в необходимые моменты, когда в камере сгорания начинает падать давление. В своем большинстве реактивный пульсирующий двигатель совершает от 180 до 270 циклов впрыскивания топлива в секунду. Чтобы стабилизировать состояние давления (3,5 кГ/см2), используется принудительная подача воздуха с помощью насосов.

    Турбореактивный двигатель, устройство которого вы рассматривали выше, обладает самым скромным расходом топлива, за счет чего и ценятся. Единственным их минусов является низкое соотношение веса и тяги. Турбинные РД позволяют развить скорость модели до 350 км/ч, при этом холостой ход двигателя держится на уровне 35 000 оборотов в минуту.

    Технические характеристики

    Важным параметром, заставляющим авиамодели летать, является тяга. Она обеспечивает хорошую мощность, способную поднимать в воздух большие грузы. Тяга у старых и новых двигателей отличается, но у моделей, созданных по чертежам 1960-х годов, работающих на современном топливе, и модернизированных современными приспособлениями, КПД и мощность существенно возрастают.

    В зависимости от типа РД, характеристики, как и принцип работы, могут отличаться, но всем им для запуска необходимо создать оптимальные условия. Запускаются двигатели при помощи стартера — других двигателей, преимущественно электрических, которые прикрепляются к валу двигателя перед входных диффузором, либо запуск происходит раскручиванием вала с помощью сжатого воздуха, подаваемого на крыльчатку.

    На примере данных из технического паспорта серийного турбореактивного двигателя GR-180 можно увидеть фактические характеристики рабочей модели:
    Тяга: 180N при 120 000 об/мин, 10N при 25 000 об/мин
    Диапазон оборотов: 25 000 — 120 000 об/мин
    Температура выхлопного газа: до 750 C°
    Скорость истечения реактивной струи: 1658 км/ч
    Расход топлива: 585мл/мин (при нагрузке), 120мл/мин (холостой ход)
    Масса: 1.2кг
    Диаметр: 107мм
    длина: 240мм

    Использование

    Основной сферой применения была и остается авиационная направленность. Количество и размер разных типов ТРД для самолетов ошеломляет, но каждый из них особенный и применяется при необходимости. Даже в авиамоделях радиоуправляемых самолетов время от времени появляются новые турбореактивные системы, которые представляются на всеобщий обзор зрителям выставок и соревнований. Внимание к его использованию позволяет существенно развивать способности двигателей, дополняя принцип работы свежими идеями.
    В последнее десятилетие парашютисты и спортсмены экстремального вида спорта вингсьют, интегрируют мини ТРД как источник тяги для полета с применением костюм-крыло из ткани для вингсьюта, в этом случае двигатели крепятся к ногам, или жесткого крыла, надеваемого как рюкзак на спину, к которому и крепятся двигатели.
    Еще одним перспективным направлением использования являются боевые беспилотники для военных, на данный момент их активно используют в армии США.
    Самым перспективным направлением использования мини ТРД — беспилотники для транспортировки товаров между городами и по миру.

    Установка и подключение

    Установка реактивного двигателя и его подключение к системе — процесс сложный. В единую цепь необходимо подключить топливный насос, перепускные и регулировочные клапана, бак и температурные датчики. В силу воздействия высоких температур, обычно используются соединения и топливные трубки с огнеупорным покрытием. Закрепляется все самодельными фитингами, паяльником и уплотнениями. Так как трубка может быть по размеру с головку иголки, соединение должно быть плотным и изолированным. Неправильное подключение может привести к разрушению или взрыву двигателя. Принцип соединения цепи на стендовых и летающих моделях отличается и должен выполняться согласно рабочим чертежам.

    Преимущества и недостатки РД

    Преимуществ у всех типов реактивных двигателей множество. Каждый из типов турбин применяется для определенных целей, которым не страшны его особенности. В авиамоделировании использование реактивного двигателя открывает двери в преодоление высоких скоростей и возможности маневрирования независимо от многих внешних раздражителей. В отличие от электро- и ДВС реактивные модели более мощные и позволяют проводить самолету в воздухе больше времени.
    Выводы
    Реактивные двигатели для авиамоделей могут иметь различную тягу, массу, структуру и внешний вид. Для авиамоделизма они всегда останутся незаменимы из-за высокой производительности и возможности применять турбину с использование разного топлива и принципа работы. Выбирая определенные цели, конструктор может корректировать номинальную мощность, принцип образования тяги и т. д., применяя разные виды турбин к разным моделям. Работа двигателя на сгорании топлива и нагнетании давления кислорода делает его максимально эффективным и экономичным от 0,145 кГ/л до 0,67 кГ/л, чего всегда добивались авиаконструкторы.

    То сделать? Купить или сделать своими руками

    Данный вопрос не простой. Так как турбореактивные двигатели, будь они полномасштабными или уменьшенными моделями, но они технически сложные устройства. Сделать из — задача не из простых. С другой стороны мини ТРД производят исключительно в США или странах Европы, поэтому и цена у них в среднем 3000 долларов, плюс минус 100 баксов. Так что покупка готового турбореактивного двигателя вам обойдется с учетом пересылки и всех сопутствующих патрубков и систем 3500 долларов. Цену мощете сами посмотреть, достаточно загуглить «турбореактивный двигатель Р180-RX»

    Поэтому в современных реалиях лучше подойти к этому делу следующим образом — что называется сделать своими руками. Но это не совсем верная трактовка, скорее отдать работу подрядчикам. Двигатель состоит из механической и электронной части. Компоненты для электронной части движителя покупаем в Китае, механическую часть заказываем у местных токарей, но для этого необходимы чертежи или 3D модели и в принципе механическая часть у вас в кармане.

    Электронная часть

    Контроллер поддержания режимов двигателя можно собрать на Arduino. Для этого нужен прошитый Arduino чип, датчики — датчик оборотов и датчик температуры и исполнительные механизмы, регулируемая электроникой заслонка подачи топлива. Чип можно прошить самому, если знаете языки программирования, либо обратиться на форум для ардуинщиков за услугой.

    Механическая часть

    С механикой все интереснее все запчасти в теории вам могут изготовить токаря и фрезеровщики, проблема вся в том, что для этого нужно их специально искать. Не проблема найти токаря, который изготовит вал и втулку вала, а вот все остальное. Самая сложная деталь в изготовлении — это колесо центробежного компрессора. Оно изготовляется либо отливкой. либо на 5 координатном фрезерном станке. Самый простой способ заполучить крыльчатку центробежного насоса это ее купить, как зап часть для турбонагнетателя ДВС автомобиля. И уже под нее ориентировать все остальные детали.

    ВНИМАНИЕ. Обновите свой браузер! Наш сайт некорректно работает с IE 8 и более старыми версиями.

    21 кг это вес всего парамотора или только движка?
    С топливом или без?
    А тяга какая получилась?

    AR731
    ресурс — 10-50 часов
    для того что бы запустить, требуется раскрутить до 1200 об/мин.

    в 9.9 кг не входит выпуск, стартер и т.п. В итоге получится около 15

    АR741 — водяного охлаждения, ресурс чуть выше — 250 часов. С радиатором, помпой, выхлопом, редукторов будет больше 20кг. Установка в сборе за тридцатку.

    Автором изобретена не имеющая аналогов турбина объёмного расширения (ТОР), при использовании которой в качестве теплового двигателя обеспечивается:
     объёмное расширение рабочего тела до атмосферного давления.
     непрерывность рабочего цикла по схеме традиционного ГТД: компрессор – камера сгорания – расширительная машина.
     рост активной площади S и радиуса R (плеча) при расширении рабочего тела.
     непрерывный крутящий момент при любых оборотах работающего двигателя.
     минимальный скоростной коэффициент — большой крутящий момент при малой частоте вращения ротора.
     бесшумный выхлоп.
     в газопаровом турбодвигателе с использованием в качестве рабочего тела газопаровой смеси с генерацией пара непосредственно в процессе расширения использование почти всей тепловой энергии газообразных продуктов сгорания.
    Газовому (ГТДОР) и газопаровому (ГПТДОР) турбодвигателям не нужны:
    • система газораспределения.
    • система глушения выхлопа.
    • система распределённого (тактного) впрыска горючего.
    Газопаровому варианту турбодвигателя не нужна:
    • традиционная система охлаждения (радиатор).
    При этом газопаровому варианту турбодвигателя нужны:
    • термочехол, покрывающий всю его поверхность.
    • ёмкость для парообразующей жидкости (ПЖ).
    • система непрерывой регулируемой подачи ПЖ.
    • конденсатор – охладитель ПЖ.
    Основой газового и газопарового турбодвигателя является двухпоточная (два двигателя в одном), симметричная, центробежная турбина объёмного расширения, обеспечивающая плоскоспиральный характер движения рабочего тела при объёмном расширении.
    Она содержит два зеркально-идентичных блока кольцевых цилиндров, между которыми эксцентрично установлен общий для двух проточных частей ротор, являющийся общим рабочим колесом и для компрессоров, и для расширения газов и газопаровой смеси.
    На планшайбе ротора с двух торцевых сторон для компрессорных полостей цилиндров и полостей предварительного бесступенчатого расширения газов каждого блока выполнены цилиндрические выступы, взаимодействующие через кинематические механизмы (шарниры) с лопастями или с лопатками рабочего колеса (вариант), а для цилиндров ступенчатого расширения газов или газопаровой смеси выполнены лопатки.
    Полости цилиндров в каждом блоке последовательно от центра к периферии — от впускного окна до выпускного, сообщаются между собой с образованием проточной части содержащей одну (впрыск, карбюратор) или две (дизель) кольцевые полости сжатия, перепускной канал, полость дожатия, воспламенения и предварительного объёмного бесступенчатого расширения рабочих газов и центробежную, спиралеобразную проточную часть ступенчатого (каскадного) объёмного расширения газов (ГТДОР) или газопаровой смеси (ГПТДОР).
    Изменением размеров поперечного сечения и количеством кольцевых цилиндров обеспечивается любая требуемая степень расширения газа или газопаровой смеси.
    Непрерывный, центробежный, спиралеобразный характер движения рабочего тела при объёмном расширении позволяет резко улучшить эффективность преобразования потенциальной энергии непосредственно в механическую, соответственно резко снизить удельный расход горючего и габаритно-весовые характеристики двигателя.
    В отличие от известных тактных поршневых и роторно-поршневых двигателей внутреннего и внешнего сгорания, а так же их многочисленных вариантов с дорасширением, в которых давление рабочего тела (газов) создаёт периодически возникающие крутящие моменты, в радиально-центробежной турбине объёмного расширения, снижающееся от центра к периферии давление создаёт непрерывные, равномерно распределённые в окружном направлении крутящие моменты на постепенно увеличивающихся радиусах, обеспечивая выигрыш в силе и общем спиралеобразном крутящем моменте на валу.
    В ГПТДОР реализуется комбинированный непрерывный рабочий цикл, состоящий из двух известных, осуществляемых раздельно в ДВС и паровых или газовых турбинах, при этом объединение двух рабочих циклов в один непрерывный, обеспечивает срабатывание всего избыточного давления и почти всего избыточного тепла рабочих газов и пара и, соответственно, обеспечивает их суммарный КПД. По существу, к газовому циклу традиционных ДВС, остаточная энергия газообразных продуктов сгорания которого велика и не используется, пристроен паровой цикл, использующий теплоту предварительно расширившихся газов для генерации пара и его дальнейшего объёмного расширения с ними до атмосферного давления газов и начала конденсации пара в жидкость.
    В ГПТДОР обеспечивается «паровозная» тяга — большой крутящий момент при малой частоте вращения ротора, т.е. минимальный скоростной коэффициент и линейная характеристика крутящего момента, что при использовании турбодвигателя в мобильных транспортных средствах исключит необходимость применения многоступенчатых коробок передач.
    Регулировка крутящего момента и соответственно мощности может осуществляться изменением подачи горючего и воды, или только воды, для мощных турбодвигателей по аналогии с паровыми турбинами, перепуском (обводом) газопаровой смеси через ступень.
    Использование в рабочем цикле ГПТДОР водяного пара не только позволяет более полно использовать теплоту продуктов сгорания, трансформируя тепловую энергию в энергию давления, но и резко снизить удельный расход горючего, воздуха и выхлопных газов, обеспечивая их полную экологическую чистоту.
    Известно, что в ДВС на сжигание 1 литра горючего в среднем расходуется 15 литров воздуха, в авиационных ГТД в 6-7 раз больше чем в ДВС. В ГПТДОР удельный расход воздуха в 8-10 раз меньше чем в ДВС, и в 50-60 раз меньше чем в ГТД.
    Эффективность использования водяного пара в рабочем цикле ДВС для снижения токсичности выхлопных газов доказана неоднократными публикациями в СМИ. Однако при этом не оценивается влияние попадающих в атмосферу токсичных паров воды, после конденсации которых, растворённые в них твёрдые и газообразные токсичные вещества попадают в почву и атмосферу, т.е. в целом выхлоп остаётся токсичным.
    При работе ГПТДОР обеспечивается полная экологическая чистота выхлопных газов. Токсичные газообразные и твердые вещества продуктов сгорания, растворённые в процессе расширения в водяном паре, остаются в контуре двигателя в конденсате, который периодически может сливаться, нейтрализовываться, а выделенные токсичные отходы утилизироваться.
    Следует напомнить, что катализатор дорогостоящее устройство, особенно платиновый, недолговечен, занимает много места, снижает мощность двигателя, и его использование приводит к повышению расхода топлива.
    В отличие от традиционных ДВС система охлаждения в ГПТДОР используется не для отвода избыточного тепла в атмосферу, а в качестве рекуперативного теплообменника, отводящего тепло при сжатии топливовоздушной смеси или воздуха и избыточное тепло продуктов сгорания для предварительного нагрева второго рабочего тела — парообразующей жидкости.
    Все варианты турбодвигателей снабжены простейшими системами непрерывной, регулируемой подачи топлива. ГПТДОР дополнительно снабжён системой регулируемой непрерывной подачи парообразующей жидкости. ГПТДОР с замкнутой системой циркуляции парообразующей жидкости снабжается конденсатором-охладителем.
    Система зажигания для вариантов с принудительным воспламенением топливовоздушной смеси, работающая в отличие от традиционных ДВС непрерывно, простая и содержит для воспламенения топливовоздушной смеси пусковые калильные или искровые свечи.
    В ГТДОР и ГПТДОР механические потери имеют место только в цилиндрах, в которых установлены лопасти и, которые выполняют функции компрессора и предварительного расширения газообразных продуктов сгорания, при этом для герметизации стыков используются простые, надёжные кольцевые торцевые уплотнения, характеризующиеся минимальным моментом трения и обеспечивающие высокий механический КПД.
    В цилиндрах, которые выполняют функцию расширения газовой или газопаровой смеси, и в которых перемещаются лопатки ротора, механические потери отсутствую вообще, при этом в них создаётся основная доля крутящего момента и, соответственно, мощности турбодвигателя.
    Расчёты показали, что фактически за счёт тепловой энергии теряемой в традиционных двигателях через систему охлаждения и с выхлопными газами в газопаровом турбодвигателе объёмного расширения до 70% мощности, т.е. больше половины создаётся за счёт нового термодинамического цикла обеспечивающего максимальное использование теплоты и за счёт оригинального эффективного кинематического механизма преобразования потенциальной энергии (давления) в механическую вращения вала – турбины объёмного расширения.
    Турбодвигатель имеет совершенную простейшую и технологичную конструкцию, отличные габаритно-весовые характеристики, работает без вибраций, бесшумно и обеспечивает экологически чистый выхлоп и по токсичности и по уровню тепла. Удельный вес турбодвигателя на уровне удельного веса авиационных ГТД.
    У всех вариантов турбодвигателя отсутствует газораспределительный механизм, нет системы глушения выхлопа и каких либо механических передач. У адиабатного газопарового варианта отсутствует и радиатор для отвода тепла в атмосферу, и он, как паровая турбина покрывается теплоизоляцией.
    Турбодвигатель обеспечивает работу на всех видах углеводородного топлива, используемого для традиционных двигателей с внешним и внутренним подводом теплоты и, соответственно, реализацию всех известных рабочих циклов ДВС. Самым эффективным, как и в поршневых ДВС является «дизельный» вариант ГПТДОР.
    ГТДОР и ГПТДОР характеризуются большой агрегатной мощностью и обеспечивают простым масштабированием создание мощностного ряда от нескольких киловатт до нескольких тысяч киловатт на один, а при передаче мощности нескольких турбодвигателей на один вал до десятков тысяч.
    Предварительные упрощённые расчёты основных технических характеристик ГПТДОР позволяют утверждать что, для создания мощности в 1 кВт он будет потреблять примерно в 8-10 раз меньше горючего, чем потребляют лучшие образцы современных ДВС, соответственно в 8-10 раз меньше потреблять атмосферного кислорода и соответственно в 8-10 раз меньше выбрасывать в атмосферу не токсичных выхлопных газов. Удельные потери тепла в атмосферу снизятся не менее чем в 15 раз.
    Эффективный КПД может достигать 75-80%, т.е. в 2 раза выше, чем обеспечивают лучшие образцы современных тепловых двигателей. При использовании тепла пара или горячего конденсата потребителями тепловой энергии (промышленная ТЭЦ или автономная мини-ТЭЦ) термический КПД может достигать 90%, в условиях космоса до 92%.
    Обеспечить вышеуказанные показатели удалось, создав совершенные кинематический механизм и комбинированный (бинарный) термодинамический цикл с использованием в качестве рабочего тела газопаровой смеси.
    ГПТДОР значительно превосходящий все типы тепловых двигателей по всем показателям заменит не только традиционные ДВС с внешним и внутренним подводом теплоты, но и паровые и газовые турбины, используемые на водном и сухопутном транспорте и промышленных ТЭС и ТЭЦ. Безальтернативный вариант не имеющей аналогов автономной мини-ТЭЦ решит проблему автономного теплоэлектроснабжения.
    Расчётные технические характеристики турбодвигателя.
    ( 1 цилиндр основного расширения и 2 цилиндра дорасширения в каждом из 2-х блоков).
    • диаметр — 275 мм
    • ширина — 105 мм
    • основной рабочий объём одного блока — 55 см 3
    • объём проточной части дорасширения одного блока — 1105 см 3
    • общий объём проточной части расширения одного блока — 1160 см 3
    • общий рабочий объём турбодвигателя -2320 см 3
    • степень сжатия 6
    • степень расширения 23
    1. Газовый вариант турбодвигателя
    • крутящий момент — 43 Н. м
    • мощность при 5000 об/мин — 22 ,5 кВт, при 10000 об/мин – 45 кВт( 61 л.с.).
    • масса (стальной вариант) -15 кг.
    • масса (алюминиевый, «гильзованный») — 8,5 кг.
    • удельный расход топлива — 40 г/кВт. час
    • удельная масса (стальной) — 0, 66 кг/кВт
    • удельная масса (алюминиевый, «гильзованный») – 0,37 кг/кВт
    • литровая мощность основного газового рабочего объёма без учёта цилиндров дорасширения (эквивалент цилиндра поршневого ДВС) — 290 кВт/литр.
    2. Газопаровой вариант турбодвигателя.
    • крутящий момент — 75 Н. м
    • мощность при 5000 об/мин 40 кВт, при 10000 об/мин – 80 кВт(108 л.с.)
    • удельный расход топлива – 23 г/ кВт. час
    • удельная масса (стальной) -0,375 кг/ кВт
    • удельная масса (алюминиевый, «гильзованный») – 0,212 кг/ кВт
    • литровая мощность основного рабочего объёма — 363 кВт/литр(5000 об/мин),
    727 кВт/литр(10000 об/мин).

    0 0 голоса
    Рейтинг статьи
    Читать еще:  Вибрация машины при холостом ходу двигателя
    Ссылка на основную публикацию