Асинхронный двигатель принцип действия механическая характеристика - Авто журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель принцип действия механическая характеристика

Асинхронный двигатель принцип действия механическая характеристика

  • Абитуриенту
  • Студенту
  • Выпускнику
  • Аспиранту
  • Сотруднику
  • Гостю
  • Контакты
  • Версия для слабовидящих
  • English

  • Контакты приемной комиссии
  • Опорный университет
  • Структура
  • Преподаватели
  • Доступная среда
  • Контакты и реквизиты
  • Телефонный справочник
  • Антитеррор
  • План университетского городка
  • Профилактика коронавирусной инфекции
  • История развития

  • Руководство
  • Ученый совет
  • Нормативные документы
  • Сведения об образовательной организации
  • Управления и отделы
  • Государственные закупки

  • Институты
  • Филиалы
  • Колледжи
  • Центры
  • Образовательные программы
  • Магистратура
  • Аспирантура, докторантура
  • Военная подготовка
  • Дополнительное образование
  • Научно-техническая библиотека

  • Научные направления
  • Конференции
  • Конкурсы и гранты
  • Фестиваль науки
  • Организация НИР
  • Диссертационные советы
  • Центры коллективного пользования
  • Научные издания

  • Управление международных коммуникаций
  • Программа «Tempus» и «ERASMUS+»
  • Проект «NanoBRIDGE»
  • Проект «Bridge»
  • Проект «HP»
  • Академия «Cisco»
  • Инновационные предприятия
  • Центр трансфера технологий

  • Воспитательная работа
  • Кураторы
  • Профсоюзы
  • Студенческий клуб
  • Центр карьеры
  • Газета «За инженерные кадры»
  • Спорт и отдых
  • Медицинская помощь

  • НОВОСТИ
  • АНОНСЫ

Год науки и технологий — год новых свершений

В течение всего 2021 года при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы и конкурсы для всех желающих.

Соглашение о сотрудничестве

В рамках соглашения будет идти подготовка кадров для газовой отрасли региона, организация совместных научно-исследовательских мероприятий, повышением квалификации сотрудников «Газпром трансгаз Саратов».

Kонкурсы от компании IPR MEDIA

Компания IPR MEDIA приглашает преподавателей, магистров и аспирантов, специалистов в области информационных и сквозных цифровых технологий СГТУ к участию в конкурсах авторских работ и творческих инициатив

Регулирование частоты вращения асинхронного электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Рисунок 1. Асинхронный двигатель Асинхронный двигатель (рис. 1) имеет неподвижную часть, которая называется статор, и вращающуюся часть, именуемую ротором. Магнитное поле создается в обмотке, размещенной в статоре. Такая конструкция электродвигателя позволяет регулировать частоту его вращения различными способами.

Основные технические характеристики, учитываемые при изменении частоты вращения

При регулировании частоты вращения асинхронных электродвигателей следует учитывать несколько основных технических показателей, которые в значительной мере влияют на процесс работы двигателей.

  1. Диапазон регулирования Д, то есть предел, до которого возможно изменять частоту вращения. Эта характеристика вычисляется по соотношению минимальной и максимальной частоты вращения.
  2. Плавность регулирования — определяется по минимальному скачку частоты вращения электродвигателя, когда осуществляется переход одной механической характеристики на другую.
  3. Направление изменения частоты вращения двигателя (так называемая зона регулирования). Номинальные условия работы определяют естественную механическую характеристику двигателя. Когда осуществляется процесс регулирования частоты вращения, эти характеристики (напряжение и частота питающей сети) начнут изменяться. В результате получаются искусственные характеристики, которые обычно ниже естественных.

Есть несколько способов регулирования частоты вращения электродвигателя:

Регулирование частоты вращения изменением частоты питающей сети

Регулирование частоты вращения путем изменения частоты в питающей сети считается одним из самых экономичных способов регулирования, который позволяет добиться отличных механических характеристик электропривода. Когда происходит изменение частоты питающей сети, частота вращения магнитного поля также меняется.

Преобразование стандартной частоты сети, которая составляет 50 Гц, происходит за счет источника питания. Одновременно с изменением частоты происходит и изменение напряжения, которое необходимо для обеспечения высокой жесткости механических характеристик.

Регулирование частоты вращения позволяет добиться различных режимов работы электродвигателя:

  • с постоянным вращающим моментом;
  • с моментом, который пропорционален квадрату частоты;
  • с постоянной мощностью на валу.

В качестве источника питания для регулирования могут использоваться электромашинные вращающиеся преобразователи, а также статические преобразователи частоты, которые работают на полупроводниковых приборах, серийно выпускающихся промышленностью.

Несомненным преимуществом частотного регулирования является наличие возможности плавно регулировать частоту вращения в обе стороны от естественной характеристики. При регулировании достигается высокая жесткость характеристик и отличная перегрузочная способность.

Регулирование частоты вращения изменением числа полюсов

Регулирование частоты вращения путем изменения числа полюсов происходит за счет изменения частоты вращения магнитного поля статора. Частота питающей сети остается неизменной, в то время как происходит изменение частоты вращения магнитного поля и частоты вращения ротора. Они меняются обратно пропорционально числу полюсов. Например, число полюсов равно 2, 4, 6, 8, тогда обороты двигателя при изменении их количества будут составлять 3000, 1500, 1000, 750 оборотов в минуту.

Двигатели, которые обеспечивают переключение числа пар полюсов, имеют обычно короткозамкнутый ротор с обмоткой. Благодаря этому ротору обеспечивается возможность работы двигателя без дополнительных пересоединений в цепи.

Изменение частоты вращения включением в цепь ротора с реостатом

Еще одним способом изменения частоты вращения двигателя является включение в цепь ротора с реостатом. Такой метод имеет существенное ограничение, так как может быть применен только для двигателей с фазным ротором. Он обеспечивает плавное изменение частоты вращения в очень широких пределах. Минусом же являются большие потери энергии в регулировочном реостате.

Читать еще:  Датчик для работы двигателя на газели

Изменение направления вращения

Изменение направления вращения двигателя может быть осуществлено за счет изменения направления вращения магнитного поля, которое создается обмотками статора. Изменение направления вращения можно достичь, изменив порядок чередования тока в фазах обмотки статора.

Однофазные и двухфазные асинхронные двигатели

Общие сведения. Однофазные асинхронные двигатели питаются от сети однофазного тока, но обмотка статора может быть при этом однофазной, двухфазной и даже трехфазной. Устройство ротора однофазного двигателя такое же, как у трехфазного. Двигатели, выпускаемые промышленностью, имеют малую мощность: от 1 Вт (серия УАД) до 400 Вт (серия ABE) и даже 600 Вт (серия АОЛБ). Однофазные асинхронные двигатели применяются в схемах автоматического управления, в различного рода бытовых устройствах, в приводах механизмов малой мощности.

Образование вращающегося магнитного поля в однофазных двигателях. Если статор имеет лишь одну обмотку ОС, питаемую от сети синусоидальным током (рис. 3.43), тогда МДС Fc этой обмотки создает пульсирующий в пространстве магнитный поток Ф, который наводит переменную ЭДС и ток в короткозамкнутой обмотке ротора. МДС статора Fc и ротора Fp будут равны и противоположны по направлению, результирующая МДС равна нулю и, следовательно, пусковой момент равен нулю, ротор не вращается. Однако если ротор при помощи какой-либо посторонней силы привести во вращение, то в дальнейшем он будет вращаться, хотя эта сила будет снята. Это явление можно объяснить, если представить пульсирующее магнитное поле в виде суммы двух вращающихся в противоположных направлениях магнитных полей (рис. 3.44).

Одно из полей обозначим Ф+, другое Ф. Амплитудные значения вращающихся полей одинаковы и равны половине амплитудного значения пульсирующего поля.

Механическая характеристика. Рассматривая вращающиеся поля независимо, можно установить, что одно поле, взаимодействуя с ротором, создает вращающий момент одного направления М+, а другое поле — момент противоположного направления М-. Тогда результирующий момент М = М+ — М-. На рис. 3.45 показаны механические характеристики п(М+) и п(М-).

Механическая характеристика однофазного двигателя п(М) находится графическим сложением этих характеристик.

Пуск в ход однофазного асинхронного двигателя с пусковой обмоткой. Из механической характеристики однофазного двигателя видно, что пусковой момент равен нулю. Для того чтобы однофазный двигатель пустить в ход, не прибегая к сторонней силе, на статоре размещают вторую обмотку, сдвинутую в пространстве на 90° относительно первой (рис. 3.46). В цепь второй обмотки включен конденсатор С, создающий в цепи этой обмотки сдвиг тока по фазе. Первую обмотку назовем рабочей РО, вторую — пусковой ПО. Токи РО и ПО образуют вращающееся магнитное поле, создающее при взаимодействии с ротором вращающий момент, приводящий ротор двигателя во вращение. После разгона двигателя пусковая обмотка отключается от сети.

Однофазный асинхронный двигатель с экранированными (расщепленными) полюсами. Статор 1 такого двигателя имеет явно выраженные полюсы, на которых расположена рабочая обмотка РО. Каждый полюс как бы расщеплен на две неравные части, одна из которых узкая, а другая — широкая. На узкой части помещен короткозамкнутый виток wк (рис. 3.47, а). Ротор двигателя короткозамкнутый, обычной конструкции. Пульсирующий магнитный поток Ф΄1, созданный переменной МДС рабочей обмотки статора, пронизывает короткозамкнутый виток и наводит в нем ЭДС Ек, которая вызывает появление тока в витке и магнитного потока Фк (рис. 3.47,6). Этот поток сдвинут по фазе относительно потока рабочей обмоткиФ˝1, складываясь с ним создает в зоне короткозамкнутого витка результирующий магнитный поток Фрез, сдвинутый по фазе относительно потока Ф1 . В результате под полюсом есть два магнитных потока Ф1 и Фрез, разнесенные в пространстве и сдвинутые по фазе (во времени), что обеспечивает получение вращающегося поля.

Технические данные подобных двигателей хуже, чем трехфазных ( [ η = 0,1÷0,4; cosφ = 0,5÷0,6, Мп = (0,1÷1) Мном ), поэтому они выпускаются на мощности до нескольких десятков ватт.

Двухфазный асинхронный двигатель с постоянно включенным конденсатором. Схема двигателя приведена на рис. 3.48.

Конденсатор Ср, создавая сдвиг фаз в цепи одной из обмоток статора, позволяет получить вращающееся магнитное поле. Если вращающий момент такого двигателя недостаточен для пуска двигателя под нагрузкой, то параллельно конденсатору Ср подключается пусковой конденсатор Сп. После разгона двигателя конденсатор Сп автоматически отключается центробежным выключателем Q.

Двухфазный асинхронный двигатель с полым немагнитным ротором. Такой двигатель находит применение при необходимости регулирования частоты вращения в широких пределах. Ротор двигателя 1 (рис. 3.49) изготавливают в виде полого цилиндра из немагнитного материала (например, сплава алюминия), вращающегося между внешней 2 и внутренней 3 частями статора. Обмотки статора размещаются либо на внешней, либо на внутренней части. Под влиянием вращающегося поля в теле ротора создаются вихревые токи, и их взаимодействие с вращающимся полем создает вращающий момент. Подобные двигатели обладают большим быстродействием, так как полый цилиндр имеет небольшой момент инерции.

Читать еще:  Холодный запуск двигателя 4м40

ГЛАВА 3.ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ НА БАЗЕ АСИНХРОННОГО ЭЛЕКТРОПРИВОДА

§3.1. Конструкция, принцип работы и характеристики трехфазного асинхронного двигателя

Асинхронной машиной называется машина переменного тока, у которой угловая скорость ротора не равна угловой скорости магнитного поля статора. Угловая скорость ротора зависит от нагрузки; в режиме двигателя нагрузкой является механический момент сопротивления на валу машины.

Классификация основных типов асинхронных двигателей приведена на рис.3.1.

У асинхронных машин большой, средней и малой мощности на статоре практически всегда расположена трехфазная обмотка, т.е. обмотка, состоящая из трех отдельных электрических цепей, сдвинутых в пространстве на 120°, асинхронные микромашины выпускаются в основном с двухфазной обмоткой статора со сдвигом обмоток фаз на 90°.

Конструкция. Магнитопроводы статора и ротора трехфазной машины обычно неявнополюсные (см.рис.1.5,а). Трехфазная обмотка статора обычно выполняется распределенной. На внешнюю панель выводов либо выходят все 6 выводов, либо обмотки фаз соединяются внутри машины по схеме “звезда” или “треугольник” и на панель выходят 3 вывода. Обмотка статора предназначена для создания вращающегося магнитного поля машины. Обмотка ротора типа «беличьей клетки» состоит из неизолированных алюминиевых или медных стержней, расположенных в пазах и замкнутых накоротко с торцов двумя кольцами .

Принцип действия. Принцип работы асинхронных машин связан с понятием вращающегося магнитного поля. Обмотка, создающая вращающееся поле, представляет собой N-фазную систему, т.е. состоит из N обмоток, которые сдвинуты друг относительно друга в пространстве и по которым протекают токи, сдвинутые во времени. Каждая из обмоток фаз создает пульсирующий поток (неподвижный в пространстве и изменяющийся во времени), сдвинутый относительно других в пространстве и во времени. Если все обмотки фаз имеют одинаковое число витков и сдвинуты в пространстве на одинаковый пространственный угол &#947, токи имеют одинаковую амплитуду Im и частоту f и сдвинуты во времени на одинаковый угол &#946, то результирующее магнитное поле будет круговым. Это означает, что поток представляет собой вектор постоянной длины, вращающийся в пространстве с постоянной угловой скоростью.

Условия образования кругового магнитного поля в общем случае можно записать следующим образом:

и в трехфазной машине (N=3) они примут вид

Угловая скорость магнитного поля, называемая синхронной скоростью машины переменного тока, будет равна (рад/с)

где рм — число пар полюсов обмотки. Синхронная частота вращения (об/мин) n1 = 60 f / рм.

Если изменить порядок чередования любых двух обмоток фаз, то вектор магнитного поля будет вращаться в противоположную сторону.

Асинхронная машина, как и электрические машины других типов, является обратимой. Принцип действия асинхронной машины основан на электромагнитном взаимодействии вращающегося магнитного поля статора с токами, наведенными этим полем в роторе. Поскольку наведение ЭДС в роторе возможно только при неравенстве угловых скоростей ротора &#9692 и магнитного поля статора &#9691, то условие &#9692 &#8800 &#9691 является обязательным для создания электромагнитного момента в любом режиме работы асинхронной машины. В качестве характеристики этого неравенства вводится понятие скольжения:

Пусть магнитное поле статора Ф1 и ротор вращаются в одну сторону и &#9692 &#9691, то машина переходит в режим генератора; теоретический диапазон режима генератора &#9692 = 0 &#247 &#8734, s = 0 &#247 ( — ∞ ).

Если ротор вращается в сторону, противоположную магнитному полю статора ,то электромагнитный момент Мэм направлен против направления вращения ротора, и машина работает в режиме торможения противовключением; теоретический диапазон работы в режиме торможения противовключением &#9692 = 0 &#247 ( — &#8734 ), s = 1 &#247 ( &#8734 ).

Линейный асинхронный двигатель в простейшем случае можно получить, если вращающийся двигатель разрезать по диаметру и развернуть на плоскости. При этом магнитное поле получается не вращающимся, а бегущим, и электрическая энергия преобразуется в механическую поступательного движения.

Электромагнитный момент. Электромагнитный момент, возникающий в результате взаимодействия вращающегося магнитного поля статора с токами, наведенными этим полем в роторе, может быть определен из выражения
Mэм = k Фм I2 cos &#9682 , (3.4)

где k – конструктивный коэффициент, зависящий от числа фаз, числа полюсов и числа витков в фазе обмотки статора.

Как видно из (3.4), электромагнитный момент прямо пропорционален основному магнитному потоку Фм и активной составляющей тока ротора I2 cos &#9682. При этом основной поток определяется напряжением питания и не зависит от нагрузки, а ток ротора I и его фаза относительно ЭДС &#9682 зависят от скольжения и соответственно от нагрузки:

В этих выражениях R2 и x2 – активное и индуктивное сопротивления фазы ротора.

Формула момента (3.4) получена для режима двигателя, но она справедлива и для других режимов с учетом знака и диапазона значений скольжения s.

Читать еще:  Двигатель ваз 21011 как его форсировать

Механические характеристики. Уравнением естественной механической характеристики асинхронного двигателя является выражение (3.4) с заменой скольжения S на угловую скорость &#9692 по (3.3) при U1=const. График характеристики изображен на рис. 3.3.

Такой вид характеристики легко поясняется с помощью формул (3.4) — (3.6).При увеличении скольжения ток ротора I2 непрерывно растет, но становится все более индуктивным – уменьшается сos&#9682, так как увеличивается частота токов в роторе и, соответственно, его индуктивное сопротивление. В результате активная составляющая тока ротора и, соответственно, электромагнитный момент вначале растут, а затем начинают убывать.

Скольжение, при котором момент достигает максимального значения Mmax, называется критическим и обозначается sкр ;на основании (3.3) соответствующая критическая скорость &#9692kp=(1-sкр)&#9691. Для определения sкр необходимо, воспользовавшись выражением (3.4), взять производную dMэм / ds и приравнять ее нулю. Решение получающегося уравнения имеет вид sкр&#8776R2x2.

В большинстве асинхронных двигателей необходимо обеспечить высокий КПД. Поэтому активное сопротивление обмоток, в частности R2, определяющее уровень электрических потерь в роторе, стремятся получить малым. При этом критическое скольжение лежит в диапазоне 0,1 &#247 0,25.

Сам максимальный момент пропорционален квадрату напряжения питания, не зависит от активного сопротивления роторной цепи R2 и наступает при тем большем скольжении, чем больше активное сопротивление роторной цепи (рис. 3.3, штрих — пунктирная линия).

Пусковой момент двигателя Mп определяется выражением (3.4) при s=1. Значение Mп пропорционально квадрату напряжения питания и возрастает при увеличении R2 (см. рис. 3.3), достигая максимума при sкр =1 (&#9692kp=0).

Оценим механическую характеристику по показателям устойчивости, жесткости и линейности. Если воспользоваться формальным признаком устойчивости d&#9692dMэм Пуск. Условием пуска двигателя является неравенство Мп>Мст ; если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. При пуске ( &#9692 = 0, s =1) ток в роторе достигает наибольшего значения (см. (3.5)). Соответственно велики пусковые токи и в обмотке статора.

У асинхронных двигателей малой мощности и специальных двигателей с повышенным критическим скольжением обычно кратность пускового тока Кiп= 6 или требуется более сильно ограничить пусковой ток, то приходится применять специальные способы пуска. У двигателей с короткозамкнутым ротором это в основном способы пуска при пониженном напряжении питания. Недостатком способов пуска при пониженном напряжении является то, что пропорционально квадрату фазного напряжения уменьшается пусковой момент.

Реверсирование двигателя. Изменение направления вращения ротора осуществляется изменением направления вращения поля статора. Для этого достаточно поменять местами выводы двух любых фаз.

Торможение двигателя. Для быстрой остановки двигателя могут применяться различные способы электрического торможения: рекуперативное, торможение противовключением и динамическое торможение.

Рекуперативное торможение происходит при работе асинхронной машины в режиме генератора параллельно с сетью, т.е. при &#9692 > &#9691. На практике этот режим встречается редко,в основном при переходе с высших угловых скоростей на низшие, например, при изменении числа пар полюсов или частоты напряжения питания.

Торможение противовключением происходит в том случае, когда магнитное поле статора вращается в одном направлении, а ротор в противоположном. При этом угловая скорость ротора и создаваемый двигателем момент имеют противоположные знаки.

Динамическое торможение осуществляется отключением обмотки статора от сети переменного тока и подключением к сети постоянного тока. Возникает неподвижное поле статора, которое наводит ЭДС и токи во вращающемся роторе. В результате взаимодействия этих токов с полем статора создается тормозной момент.

Регулирование скорости. Трехфазные асинхронные двигатели используют в основном в приводах, не требующих широкого регулирования угловой скорости ротора. Однако в последнее время расширяется применение этих дешевых и надежных двигателей и в регулируемом электроприводе, в том числе в станках с числовым программным управлением. Основные способы регулирования угловой скорости ротора основаны на изменении скорости поля за счет изменения частоты напряжения питания или числа полюсов, т.к.
&#9692=(1 — s)&#9691=(1-s)(2&#960f1/pм). (3.7)

Изменение числа пар полюсов рм позволяет дискретно регулировать &#9692. Для реализации этого способа требуется либо укладывать на статоре несколько обмоток с различным рм, либо выполнять одну обмотку из секций, выведенных на коммутатор. Основным недостатком способа регулирования является ступенчатый характер изменения угловой скорости, число ступеней скорости не превышает 3&#247 4.

Регулирование скорости в ограниченном диапазоне возможно также за счет изменения амплитуды напряжения питания, а у двигателей с контактными кольцами – изменения добавочного сопротивления в цепи ротора.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию