3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Алгоритм работы шагового двигателя

Алгоритм работы шагового двигателя

Использование шаговых двигателей является одним из самых простых, дешевых и легких решений для реализации систем точного позиционирования. Эти двигатели очень часто используются в различных станках ЧПУ и роботах. Сегодня я расскажу о том, как устроены шаговые двигатели и как они работают.

Что такое шаговый двигатель?

Прежде всего, шаговый двигатель — это двигатель. Это означает, что он преобразует электрическую энергию в механическую. Основное отличие между ним и всеми остальными типами двигателей состоит в способе, благодаря которому происходит вращение. В отличие от других моторов, шаговые двигатели вращаются НЕ непрерывно! Вместо этого, они вращаются шагами (отсюда и их название). Каждый шаг представляет собой часть полного оборота. Эта часть зависит, в основном, от механического устройства мотора и от выбранного способа управления им. Шаговые двигатели также различаются способами питания. В отличие от двигателей переменного или постоянного тока, обычно они управляются импульсами. Каждый импульс преобразуется в градус, на который происходит вращение. Например, 1.8º шаговый двигатель, поворачивает свой вал на 1.8° при каждом поступающем импульсе. Часто, из-за этой характеристики, шаговые двигатели еще называют цифровыми.

Основы работы шагового двигателя

Как и все моторы, шаговые двигатели состоят из статора и ротора. На роторе установлены постоянные магниты, а в состав статора входят катушки (обмотки). Шаговый двигатель, в общем случае, выглядит следующим образом:

Здесь мы видим 4 обмотки, расположенные под углом 90° по-отношению друг к другу, размещенные на статоре. Различия в способах подключения обмоток в конечном счете определяют тип подключения шагового двигателя. На рисунке выше, обмотки не соединяются вместе. Мотор по такой схеме имеет шаг поворота равный 90°. Обмотки задействуются по кругу — одна за другой. Направление вращения вала определяется порядком, в котором задействуются обмотки. Ниже показана работа такого мотора. Ток через обмотки протекает с интервалом в 1 секунду. Вал двигателя поворачивается на 90° каждый раз, когда через катушку протекает ток.

Режимы управления

Теперь рассмотрим различные способы подачи тока на обмотки и увидим, как в результате вращается вал мотора.

Волновое управление или полношаговое управление одной обмоткой

Этот способ описан выше и называется волновым управлением одной обмоткой. Это означает, что только через одну обмотку протекает электрический ток. Этот способ используется редко. В основном, к нему прибегают в целях снижения энергопотребления. Такой метод позволяет получить менее половины вращающего момента мотора, следовательно, нагрузка мотора не может быть значительной.

У такого мотора будет 4 шага на оборот, что является номинальным числом шагов.

Полношаговый режим управления

Вторым, и наиболее часто используемым методом, является полношаговый метод. Для реализации этого способа, напряжение на обмотки подается попарно. В зависимости от способа подключения обмоток (последовательно или параллельно), мотору потребуется двойное напряжение или двойной ток для работы по отношению к необходимым при возбуждении одной обмотки. В этом случае мотор будет выдавать 100% номинального вращающего момента.

Такой мотор имеет 4 шага на полный оборот, что и является номинальным числом шагов для него.

Полушаговый режим

Это очень интересный способ получить удвоенную точность системы позиционирования, не меняя при этом ничего в «железе»! Для реализации этого метода, все пары обмоток могут запитываться одновременно, в результате чего, ротор повернется на половину своего нормального шага. Этот метод может быть также реализован с использованием одной или двух обмоток. Ниже показано, как это работает.

Используя этот метод, тот же самый мотор сможет дать удвоенное число шагов на оборот, что означает двойную точность для системы позиционирования. Например, этот мотор даст 8 шагов на оборот!

Режим микрошага

Микрошаговый режим наиболее часто применяемый способ управления шаговыми двигателями на сегодняшний день. Идея микрошага состоит в подаче на обмотки мотора питания не импульсами, а сигнала, по своей форме, напоминающего синусоиду. Такой способ изменения положения при переходе от одного шага к другому позволяет получить более гладкое перемещение, делая шаговые моторы широко используемыми в таких приложениях как системы позиционирования в станках с ЧПУ. Кроме этого, рывки различных деталей, подключенных к мотору, также как и толчки самого мотора значительно снижаются. В режиме микрошага, шаговый мотор может вращаться также плавно как и обычные двигатели постоянного тока.

Форма тока, протекающего через обмотку похожа на синусоиду. Также могут использоваться формы цифровых сигналов. Вот некоторые примеры:

Метод микрошага является в действительности способом питания мотора, а не методом управления обмотками. Следовательно, микрошаг можно использовать и при волновом управлении и в полношаговом режиме управления. Ниже продемонстрирована работа этого метода:

Хотя кажется, что в режиме микрошага шаги становятся больше, но, на самом деле, этого не происходит. Для повышения точности часто используются трапецевидные шестерни. Этот метод используется для обеспечения плавного движения.

Типы шаговых двигателей

Шаговый двигатель с постоянным магнитом

Ротор такого мотора несет постоянный магнит в форме диска с двумя или большим количеством полюсов. Работает точно также как описано выше. Обмотки статора будут притягивать или отталкивать постоянный магнит на роторе и создавать тем самым крутящий момент. Ниже представлена схема шагового двигателя с постоянным магнитом.

Обычно, величина шага таких двигателей лежит в диапазоне 45-90°.

Шаговый двигатель с переменным магнитным сопротивлением

У двигателей этого типа на роторе нет постоянного магнита. Вместо этого, ротор изготавливается из магнитомягкого металла в виде зубчатого диска, типа шестеренки. Статор имеет более четырех обмоток. Обмотки запитываются в противоположных парах и притягивают ротор. Отсутствие постоянного магнита отрицательно влияет на величину крутящего момента, он значительно снижается. Но есть и большой плюс. У этих двигателей нет стопорящего момента. Стопорящий момент — это вращающий момент, создаваемый постоянными магнитами ротора, которые притягиваются к арматуре статора при отсутствии тока в обмотках. Можно легко понять, что это за момент, если попытаться повернуть рукой отключенный шаговый двигатель с постоянным магнитом. Вы почувствуете различимые щелчки на каждом шаге двигателя. В действительности то, что вы ощутите и будет фиксирующим моментом, который притягивает магниты к арматуре статора. Ниже показана работа шагового двигателя с переменным магнитным сопротивлением.

Шаговые двигатели с переменным магнитным сопротивлением обычно имеют шаг, лежащий в диапазоне 5-15°.

Гибридный шаговый двигатель

Данный тип шаговых моторов получил название «гибридный» из-за того, что сочетает в себе характеристики шаговых двигателей и с постоянными магнитами и с переменным магнитным сопротивлением. Они обладают отличными удерживающим и динамическим крутящим моментами, а также очень маленькую величину шага, лежащую в пределах 0.9-5°, обеспечивая великолепную точность. Их механические части могут вращаться с большими скоростями, чем другие типы шаговых моторов. Этот тип двигателей используется в станках ЧПУ high-end класса и в роботах. Главный их недостаток — высокая стоимость.

Обычный мотор с 200 шагами на оборот будет иметь 50 положительных и 50 отрицательных полюсов с 8-ю обмотками (4-мя парами). Из-за того, что такой магнит нельзя произвести, было найдено элегантное решение. Берется два отдельных 50-зубых диска. Также используется цилиндрический постоянный магнит. Диски привариваются один с положительному, другой к отрицательному полюсам постоянного магнита. Таким образом, один диск имеет положительный полюс на своих зубьях, другой — отрицательный.

Два 50-зубых диска помещены сверху и снизу постоянного магнита

Фокус в том, что диски размещаются таким образом, что если посмотреть на них сверху, то они выглядят как один 100-зубый диск! Возвышения на одном диске совмещаются со впадинами на другом.

Читать еще:  Что значит двигатель редуктор

Впадины на одном диске выровнены с возвышениями на другом

Ниже показана работа гибридного шагового двигателя, имеющего 75 шагов на оборот (1.5° на шаг). Стоит заметить, что 6 обмоток спарены, каждая имеет обмотку с противоположной стороны. Вы наверняка ожидали, что катушки расположены под углом в 60° следом друг за другом, но, на самом деле, это не так. Если предположить, что первая пара — это самая верхняя и самая нижняя катушки, тогда вторая пара смещена под углом 60+5° по отношению к первой, и третья смещена на 60+5° по отношению ко второй. Угловая разница и является причиной вращения мотора. Режимы управления с полным и половинным шагом могут использоваться, впрочем как и волновое управление для снижения энергопотребления. Ниже продемонстрировано полношаговое управление. В полушаговом режиме, число шагов увеличится до 150!

Не пытайтесь следовать за обмотками, чтобы понаблюдать, как это работает. Просто сфокусируйтесь на одной обмотке и ждите. Вы заметите, что всякий раз, когда обмотка задействована, есть 3 положительных полюса (красный) в 5° позади, которые притягиваются по направлению вращения и другие 3 отрицательных полюса (синий) в 5° впереди, которые толкаются в направлении вращения. Задействованная обмотка всегда находится между положительным и отрицательным полюсами.

Подключение обмоток

Шаговые двигатели относятся к многофазным моторам. Больше обмоток, значит, больше фаз. Больше фаз, более гладкая работа мотора и более выокая стоимость. Крутящий момент не связан с числом фаз. Наибольшее распространение получили двухфазные двигатели. Это минимальное количество необходимых для того, чтобы шаговый мотор функционировал. Здесь необходимо понять, что число фаз не обязательно определяет число обмоток. Например, если каждая фаза имеет 2 пары обмоток и мотор является двухфазным, то количество обмоток будет равно 8. Это определяет только механические характеристики мотора. Для упрощения, я рассмотрю простейший двухфазный двигатель с одной парой обмоток на фазу.

Существует три различных типа подключения для двухфазных шаговых двигателей. Обмотки соединяются между собой, и, в зависимости от подключения, используется различное число проводов для подключения мотора к контроллеру.

Биполярный двигатель

Это наиболее простая конфигурация. Используются 4 провода для подключения мотора к контроллеру. Обмотки соединяются внутри последовательно или параллельно. Пример биполярного двигателя:

Мотор имеет 4 клеммы. Два желтых терминала (цвета не соответствуют стандартным!) питают вертикальную обмотку, два розовых — горизонтальную обмотку. Проблема такой конфигурации состоит в том, что если кто-то захочет изменить магнитную полярность, то единственным способом будет изменение направления электрического тока. Это означает, что схема драйвера усложнится, например это будет H-мост.

Униполярный двигатель

В униполярном двигателе общий провод подключен к точке, где две обмотки соединены вместе:

Используя этот общий провод, можно легко изменить магнитные полюса. Предположим, например, что мы подключили общий провод к земле. Запитав сначала один вывод обмотки, а затем другой — мы изменяем магнитные полюса. Это означает, что схема для использования биполярного двигателя очень простая, как правило, состоит только из двух транзисторов на фазу. Основным недостатком является то, что каждый раз, используется только половина доступных катушечных обмоток. Это как при волновом управлении двигателем с возбуждением одной обмотки. Таким образом, крутящий момент всегда составляет около половины крутящего момента, который мог быть получен, если бы обе катушки были задействованы. Другими словами, униполярные электродвигатели должны быть в два раза более габаритными, по сравнению с биполярным двигателем, чтобы обеспечить такой же крутящий момент. Однополярный двигатель может использоваться как биполярный двигатель. Для этого нужно оставить общий провод неподключенным.

Униполярные двигатели могут иметь 5 или 6 выводов для подключения. На рисунке выше продемонстрирован униполярный мотор с 6 выводами. Существуют двигатели, в которых два общих провода соединены внутри. В этом случае, мотор имеет 5 клемм для подключения.

8-выводной шаговый двигатель

Это наиболее гибкий шаговый мотор в плане подключения. Все обмотки имеют выводы с двух сторон:

Этот двигатель может быть подключен любым из возможных способов. Он может быть подключен как:

  • 5 или 6-выводной униполярный,
  • биполярный с последовательно соединенными обмотками,
  • биполярный с параллельно соединенными обмотками,
  • биполярный с одним подключением на фазу для приложений с малым потреблением тока

Шаговые двигатели

Шаговым двигателем называют электромеханическое устройство, преобразующее электрические сигналы в дискретные угловые перемещения вала. Применение шаговых двигателей позволяет рабочим органам машин совершать строго дозированные перемещения с фиксацией своего положения в конце движения.

Шаговые двигатели являются приводными исполнительными механизмами, обеспечивающими фиксированные угловые перемещения (шаги). Каждое изменение угла поворота ротора — это реакция шагового двигателя на входной импульс.

Дискретный электропривод с шаговым двигателем естественным образом сочетается с цифровыми управляющими устройствами, что позволяет успешно использовать его в станках с числовым программным управлением, в промышленных роботах и манипуляторах, в часовых механизмах.

Дискретный электропривод может быть реализован также с помощью серийных асинхронных электродвигателей, которые за счет специального управления могут работать в шаговом режиме.

Шаговые двигатели применяются в электроприводах мощностью от долей ватта до нескольких киловатт. Расширение шкалы мощности дискретного электропривода может быть достигнуто при использовании серийных асинхронных электродвигателей, которые за счет соответствующего управления могут работать в шаговом режиме.

Принцип действия шаговых двигателей всех типов состоит в следующем. С помощью электронного коммутатора вырабатываются импульсы напряжения, которые подаются на обмотки управления, расположенные на статоре шагового двигателя.

В зависимости от последовательности возбуждения обмоток управления происходит то или иное дискретное изменение магнитного поля в рабочем зазоре двигателя. При угловом перемещении оси магнитного поля обмоток управления шагового двигателя его ротор дискретно поворачивается вслед за магнитным полем. Закон поворота ротора определяется последовательностью, скважностью и частотой управляющих импульсов, а также типом и конструктивными параметрами шагового двигателя.

Принцип действия шагового двигателя (получение дискретного перемещения ротора) рассмотрим на примере простейшей схемы двухфазного шагового двигателя (рис. 1).

Рис. 1. Упрощенная схема шагового двигателя с активным ротором

Шаговый двигатель имеет на статоре две пары явно выраженных полюсов, на которых Находятся обмотки возбуждения (управления): обмотка 3 с выводами 1Н — 1К и обмотка 2 с выводами 2Н — 2К. Каждая обмотка состоит из двух частей, находящихся на противоположных полюсах статора 1 ШД.

Ротор в рассматриваемой схеме представляет собой двухполюсный постоянный магнит. Обмотки питаются импульсами от устройства управления, которое преобразует одноканальную последовательность входных импульсов управления f упр, в многоканальную (по числу фаз шагового двигателя).

Рассмотрим работу шагового двигателя, предположив, что в начальный момент напряжение подано на обмотку 3. Ток в этой обмотке вызовет намагничивание вертикально расположенных полюсов N и 8. В результате взаимодействия магнитного поля с постоянным магнитом ротора последний займет равновесное положение, в котором оси магнитных полей статора и ротора совпадают.

Положение будет устойчивым, поскольку на ротор действует синхронизирующий момент, стремящийся возвратить ротор в положение равновесия: М = М m ах х sin α ,

где М m ах — максимальный момент, α — угол между осями магнитных полей статора и ротора.

При переключении блоком управления напряжения с обмотки 3 на обмотку 2 образуется магнитное поле с горизонтальными полюсами, т.е. магнитное поле статора совершает дискретный поворот на четверть окружности статора. При этом между осями статора и ротора появится угол рассогласования α = 90° и на ротор будет действовать максимальный вращающий момент Мшах. Ротор повернется на угол α = 90° и займет новое устойчивое положение. Таким образом, вслед за шаговым перемещением поля статора совершает шаговое перемещение ротор двигателя.

Читать еще:  Гранта загорелся чек троит двигатель

Основной режим работы шагового двигателя — динамический. Шаговые двигатели в отличие от синхронных рассчитаны на вхождение в синхронизм из состояния покоя и принудительное электрическое торможение. Благодаря этому в шаговом электроприводе обеспечивается пуск, торможение, реверс и переход с одной частоты управляющих импульсов на другую.

Пуск шагового двигателя осуществляется скачкообразным или постепенным увеличением частоты входного сигнала от нуля до рабочей, торможение — снижением ее до нуля, а реверс — изменением последовательности коммутации обмоток шагового двигателя.

Шаговые двигатели характеризуются следующими параметрами: число фаз (обмоток управления) и схема их соединения, тип шагового двигателя (с активным или пассивным ротором), одиночный шаг ротора (угол поворота ротора при единичном импульсе), номинальное напряжение питания, максимальный статический хронизирующий момент, номинальный вращающий момент, момент инерции ротора, частота приемистости.

Шаговые двигатели бывают однофазными, двухфазными и многофазными с активным или пассивным ротором. Управление шаговым двигателем обеспечивается электронным блоком управления. Пример схемы управления шаговым двигателем приведен на рисунке 2.

Рис. 2. Функциональная схема разомкнутого электропривода с шаговым двигателем

Сигнал управления f упр в виде импульсов напряжения поступает на вход блока 1, преобразующего последовательность импульсов, например в четырехфазную систему однополярных импульсов (в соответствии с числом фаз шагового двигателя).

Блок 2 формирует эти импульсы по длительности и амплитуде, необходимым для нормальной работы коммутатора 3, к выходам которого подключены обмотки шагового двигателя 4. Коммутатор и остальные блоки питаются от источника постоянного тока 5.

При повышенных требованиях к качеству дискретного привода применяют замкнутую схему шагового электропривода (рис. 3), которая кроме шагового двигателя включает преобразователь П, коммутатор К и датчик шага ДШ. В таком дискретном приводе информация о действительном положении вала рабочего механизма РМ и скорости шагового двигателя поступает на вход автоматического регулятора, который обеспечивает заданный характер движения привода.

Рис. 3. Функциональная схема замкнутого дискретного привода

В современных системах дискретного привода применяются микропроцессорные средства управления. Область применения приводов с шаговыми двигателями постоянно расширяется. Их использование перспективно в сварочных автоматах, приборах времени, лентопротяжных и регистрирующих механизмах, системах управления топливоподачей двигателей внутреннего сгорания.

Преимущества шаговых двигателей:

высокая точность, даже в разомкнутой структуре управления, т. е. без датчика угла поворота;

естественная интеграция с приложениями цифрового управления;

отсутствие механических коммутаторов, которые часто создают проблемы в двигателях других типов.

Недостатки шаговых двигателей:

малый вращающий момент но сравнению с двигателями приводов непрерывного типа;

высокий уровень вибрации из-за скачкообразного движения;

большие ошибки и колебания при потере импульсов в системах с разомкнутым контуром управления.

Преимущества шаговых двигателей намного превосходят их недостатки, поэтому они часто применяются в тех случаях, когда достаточно небольшой мощности приводных устройств.

В статье использованы материалы книги Дайнеко В.А., Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

ГЛАВА 4.ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ НА БАЗЕ ЭЛЕКТРОПРИВОДА С ШАГОВЫМИ ДВИГАТЕЛЯМИ

§4.1.Конструкция,принцип работы и характеристики синхронного шагового двигателя

Синхронными называются электрические машины переменного тока, у которых в рабочем режиме угловая скорость ротора равна угловой скорости магнитного поля статора и не зависит от нагрузки. В отдельных случаях скорость ротора кратна скорости поля статора.

В связи с развитием цифровой вычислительной техники разрабатывают и совершенствуют исполнительные элементы дискретного действия и, в частности, электрические шаговые двигатели. Шаговыми называют синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота вала или фиксированное перемещение без датчиков обратной связи. Шаговые двигатели выпускаются мощностью от единиц микроватт до киловатта, т.е. в основном – это микродвигатели и двигатели малой мощности.

Шаговые микродвигатели (ШД) работают в комплекте с полупроводниковыми коммутаторами. Роль коммутатора состоит в переключении обмоток управления ШД с последовательностью и частотой, соответствующими заданной команде. При этом результирующий угол поворота ШД строго соответствует числу переключений обмоток управления, направление поворота – порядку переключений, а угловая скорость – частоте переключений.

Классификация основных типов шаговых двигателей приведена на рис.4.1.

Шаговые двигатели являются многополюсными машинами. Их можно подразделить на три основные конструктивные группы: с постоянными магнитами (активного типа), реактивные и индукторные. Они могут иметь различное число фаз, но наибольшее распространение получили двух-, трех- и четырехфазные ШД. Напряжение питания обмотки управления шагового двигателя представляет собой последовательность однополярных или разнополярных прямоугольных импульсов, поступающих от коммутатора.

Двигатели активного типа. Статор шаговых двигателей имеет явновыраженные полюсы, на которых располагают обмотки управления. Число пар полюсов каждой из обмоток управления рм равно числу пар полюсов ротора. Ротор обычно представляет собой многополюсный постоянный магнит с радиальной намагниченностью.

Принцип действия ШД можно рассмотреть на примере двухполюсного двигателя.

На рис. 4.2,а показана схема подключения обмоток управления 1 и 2 двухфазного ШД к коммутатору К. Точками обозначены начала обмоток, U – напряжение питания, Uy – импульсный сигнал управления. На рис. 4.2,б изображена временная диаграмма силовых импульсов напряжения на обмотках управления двигателя при восьмитактной ( I-УШ ), разнополярной системе коммутации. Переход от одного такта к другому соответствует поступлению на коммутатор очередного импульсного сигнала управления. При этом, как видно, скачкообразно изменяется значение или полярность напряжения на обмотках управления.

Рассмотрим более подробно, что происходит в эти моменты времени в двигателе. Во время такта I положительный импульс тока возбуждает обмотку управления 1 (рис. 4.2,а). Магнитный поток статора Фс направлен по оси этой обмотки (рис.4.2,в). Ротор (постоянный магнит NS) притягивается к полюсам обмотки I и занимает положение вдоль ее оси. При переходе к такту II дополнительно возбуждаются полюсы обмотки управления 2. Результирующий поток статора Фc, создаваемый теперь двумя обмотками, скачком поворачивается на 45° (рис. 4.2,в). Возникает синхронизирующий момент синхронного двигателя, и ротор поворачивается на тот же угол. При переходе к такту III остается возбужденной только обмотка 2. Поток статора и ротор поворачиваются еще на один шаг, равный 45°. Положение потока статора на всех восьми тактах показано на рис.4.2, в.

Показанная на рис. 4.2 раздельно-совместная последовательность включения обмоток управления является несимметричной системой коммутации, так как нечетным и четным тактам соответствует возбуждение различного числа обмоток. Результирующий поток статора меняется от такта к такту, что вызывает пульсацию синхронизирующего момента и является недостатком схемы.

Систему коммутации называют симметричной, если на всех тактах возбуждается одинаковое число обмоток управления (раздельно, парами и т. д.). При симметричной коммутации шаг увеличивается вдвое, а результирующий поток статора на всех тактах одинаков.

Величина шага в значительной мере определяет разрешающую способность привода с ШД по отработке углового перемещения во всех режимах работы привода. В общем случае шагом ШД называют угол поворота ротора при воздействии одного сигнала управления и установленной схеме коммутации. В режиме отработки единичных шагов – работе с низкой частотой управляющих импульсов f – положение ротора фиксируется с нулевой скоростью на каждом шаге.

В реальном многополюсном двигателе шаг меньше показанного на рис.4.2 в рм раз и определяется выражением

Число тактов коммутации Ктк зависит от числа обмоток управления mу и схемы управления:

где К1 – коэффициент, равный 1 при симметричной и 2 – при несимметричной коммутации; К2 – коэффициент, равный 1 при однополярной и 2 – при разнополярной коммутации .

Читать еще:  Что значит форсировать двигатель

Увеличение числа пар полюсов при неизменном диаметре ротора ограничено технологическими возможностями и увеличением потока рассеяния между полюсами, обычно рм =4 &#247 6. Увеличение числа обмоток управления связано с усложнением коммутатора, обычно mу =2 &#247 4. Поэтому у активных ШД &#945ш составляет порядка десяти градусов. Дальнейшее уменьшение шага достигается либо механическим редуцированием с помощью специальных кинематических механизмов, либо специальными схемами электрического дробления шага.

Меньшая величина шага – порядка одного градуса– может быть получена у ШД реактивного и индукторного типа. У этих двигателей ротор изготавливается из обычной электротехнической стали, имеет на поверхности зубцы, число которых zp может быть достаточно большим, и

Однако у этих двигателей меньше вращающий момент.

Важной характеристикой установившегося режима (f=const) является предельная механическая характеристика — зависимость предельного вращающего момента шагового двигателя Мпред от частоты управляющих импульсов f (рис.4.3). Она определяет тот предел, до которого при данной частоте управляющих импульсов можно плавно нагружать вал ШД, сохраняя при этом синхронный режим. Предельную механическую характеристику рассматривают обычно при &#131>&#131 ,где &#131–частота главного резонанса. С увеличением частоты происходит уменьшение вращающего момента ШД, т.к. токи и потоки в обмотках управления все сильнее не успевают достигать установившихся значений за время такта.

Важным показателем переходных режимов (f=var – пуск, реверсирование, торможение) является приемистость ШД. Приемистость пуска – это наибольшая частота управляющих импульсов, отрабатываемых шаговым электродвигателем без потери шагов при пуске из состояния фиксированной стоянки под током.

Скачкообразное увеличение частоты управляющих импульсов при пуске от нуля до рабочей частоты приводит к тому, что в начале ротор отстает от МДС статора под действием момента инерции вращающихся частей. По мере ускорения он достигает угловой скорости МДС статора и за счет запасенной кинетической энергии может опередить МДС. Постепенно колебания затухают, и двигатель переходит в установившийся режим. Таким образом, в процессе пуска может возникнуть расхождение между числом шагов ротора и МДС статора. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага и момента инерции вращающихся частей; момент трения отрицательно влияет на приемистость.

По аналогии могут быть введены понятия приемистости торможения и реверсирования, их значения несколько отличаются от приемистости пуска.

Если пренебречь моментом трения M&#131т и рассматривать уравнение равновесия моментов на валу ШД при малых углах рассогласования осей ротора и МДС статора, то получим дифференциальное уравнение движения ротора:

Шаговые двигатели: виды, принцип работы, система управления

Шаговые двигатели широко используются в бытовых приборах, транспортных средствах, фрезерных и шлифовальных станках и других производственных механизмах. Устройство представляет собой движок постоянного тока, один оборот которого разделен на несколько одинаковых шагов (это обеспечивается благодаря контроллеру). Главное его отличие от моторов других типов – отсутствие щеточного механизма. Шаговый двигатель оснащен блоком управления (приборной панелью), передатчиками и сигнализаторами.

Как работает шаговый электродвигатель

Зная принцип работы шагового двигателя, вы сможете самостоятельно установить его или произвести ремонт. Он функционирует следующим образом:

  • После подачи напряжения на клеммы начинается непрерывное вращение специальных щеток. Входные импульсы устанавливают ведущий вал в положение, которое заранее определено.
  • Под воздействием импульсов вал перемещается под фиксированным углом.
  • Внешняя цепь управления, чаще всего представленная микроконтроллером, возбуждает электромагниты зубчатого типа. Один из них (тот, к которому приложена энергия) притягивает к себе зубья шестерни, вследствие чего вал движка делает поворот.
  • Будучи выровнены по отношению к ведущему электромагниту, остальные магниты смещаются по направлению к следующей магнитной детали.
  • Вращение шестеренки обеспечивается отключением первого электромагнита и включением следующего.
  • Шестеренка выравнивается по отношению к предыдущему колесу, после чего весь процесс повторяется столько раз, сколько необходимо.

Данные вращения являются постоянным шагом. Для определения скорости мотора нужно подсчитать количество шагов, требуемых для его полного оборота. Точность работы обеспечивается благодаря микропроцессорным системам управления шаговых двигателей.

Виды шаговых двигателей

Существует несколько разных моделей шаговых двигателей. Если конструкция устройства предусматривает наличие постоянного магнита, принцип работы основан на притяжении или отталкивании статором и ротором электромагнитного мотора. В переменно-шаговом движке ротор изготавливается из железа. Минимально допустимое отталкивание в нем происходит при наименьшем зазоре, что обеспечивает притяжение точек ротора к полюсам магнитного статора. В механизмах гибридного типа оба вышеприведенных принципа сочетаются и дополняют друг друга. Из-за сложности конструкции и изготовления такие приборы стоят дороже, чем остальные модели.

Чаще всего в быту и на производстве применяются двухфазные шаговые двигатели. В зависимости от типа обмотки электромагнитных катушек они подразделяются на:

  • униполярные;
  • биполярные.

Механизмы первого типа оснащены одной обмоткой. Каждая фаза определяется центральным магнитным краном. При включении определенной секции обмотки обеспечивается нужное направление магнитного поля. Такая конструкция предусматривает работу магнитного полюса без дополнительного переключения, что обеспечивает предельно простую коммутацию цепи, равно как и направления тока. Для работы движка (с учетом фазного переключения) обычно достаточно трех проводов на фазу и шести для выходного сигнала. Микроконтроллер используется для активирования транзистора в нужной последовательности (она определяется программой).

Для подключения обмоток соединительные провода должны прикасаться к постоянным магнитам двигателя. При соединении клемм катушки вал проворачивается с трудом. Поскольку общий провод длиннее, чем провод, соединяющий катушки, сопротивление между торцами проводов и торцами катушек в два раза больше сопротивления между торцом катушки и общим проводом.

В механизмах второго типа есть только одна фазовая обмотка. Управляющая схема такого движка обычно сложнее, так как ток в обмотку поступает при помощи магнитного полюса переломным образом. Два провода на фазу не являются общими.

Трехфазный шаговый двигатель устанавливается на фрезерных станках с ЧПУ, запускаемых с компьютера, и транспортных средствах, в которых используется дроссельная заслонка.

Подключение шагового двигателя

Выбор схемы подключения шагового двигателя зависит от:

  • количества проводов в приводе;
  • способа запуска механизма.

Существующие модели движков имеют 4, 5, 6 или 8 проводов. Прибор с четырьмя проводами можно подключать только к биполярным устройствам. Он оснащен двумя фазными обмотками, каждая из которых имеет два провода. Для пошагового подключения драйвера необходимо определить пары проводов с непрерывной связью с помощью метра.

В механизме с шестью проводами каждая обмотка имеет два провода и центральный кран. Движки этой модели характеризуются высокой мощностью и подключаются как к биполярным, так и к однополярным исполнительным устройствам. В первом случае используется один центр-кран каждой обмотки и один конец провода. Во втором случае используются все шесть проводов. Разделение провода осуществляется с помощью измерительного прибора.

Отличие пятипроводного мотора от шестипроводной модели заключается в том, что соединение центральных клемм представляет собой сплошной кабель, который выходит к центральному проводу. Поскольку отделение одной обмотки от другой без разрывов не представляется возможным, необходимо определить центр провода, после чего соединять его с другими проводниками. Это будет самым безопасным и максимально эффективным решением. Затем движок подключается к сети и проводится проверка его работоспособности.

Для успешной эксплуатации механизма нужно иметь в виду следующие нюансы:

  • Номинальное напряжение производится первичной обмоткой при постоянном токе.
  • Изменение начальной скорости крутящего момента прямо пропорционально изменению тока.
  • Скорость понижения линейного момента на последующих высоких скоростях зависит от индуктивности обмоток и схемы привода.

Благодаря высокой степени защиты шаговые двигатели успешно работают в тяжелых условиях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector